Properties

Label 8-378e4-1.1-c9e4-0-6
Degree $8$
Conductor $20415837456$
Sign $1$
Analytic cond. $1.43653\times 10^{9}$
Root an. cond. $13.9529$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·2-s + 2.56e3·4-s − 2.20e3·5-s + 9.60e3·7-s + 8.19e4·8-s − 1.41e5·10-s − 1.47e4·11-s + 2.14e4·13-s + 6.14e5·14-s + 2.29e6·16-s − 4.85e5·17-s − 4.68e4·19-s − 5.65e6·20-s − 9.46e5·22-s + 4.30e5·23-s − 2.54e6·25-s + 1.37e6·26-s + 2.45e7·28-s − 2.58e6·29-s − 6.22e6·31-s + 5.87e7·32-s − 3.10e7·34-s − 2.12e7·35-s + 8.99e6·37-s − 2.99e6·38-s − 1.80e8·40-s − 2.20e7·41-s + ⋯
L(s)  = 1  + 2.82·2-s + 5·4-s − 1.57·5-s + 1.51·7-s + 7.07·8-s − 4.46·10-s − 0.304·11-s + 0.208·13-s + 4.27·14-s + 35/4·16-s − 1.41·17-s − 0.0824·19-s − 7.89·20-s − 0.861·22-s + 0.321·23-s − 1.30·25-s + 0.589·26-s + 7.55·28-s − 0.677·29-s − 1.21·31-s + 9.89·32-s − 3.98·34-s − 2.38·35-s + 0.789·37-s − 0.233·38-s − 11.1·40-s − 1.21·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.43653\times 10^{9}\)
Root analytic conductor: \(13.9529\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{4} T )^{4} \)
3 \( 1 \)
7$C_1$ \( ( 1 - p^{4} T )^{4} \)
good5$C_2 \wr S_4$ \( 1 + 2208 T + 7415726 T^{2} + 2406860928 p T^{3} + 860617141179 p^{2} T^{4} + 2406860928 p^{10} T^{5} + 7415726 p^{18} T^{6} + 2208 p^{27} T^{7} + p^{36} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 1344 p T + 5325285398 T^{2} + 67924990883520 T^{3} + 17889381886564963563 T^{4} + 67924990883520 p^{9} T^{5} + 5325285398 p^{18} T^{6} + 1344 p^{28} T^{7} + p^{36} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 21464 T + 21751402636 T^{2} + 339823680844984 T^{3} + 18037851891023757262 p T^{4} + 339823680844984 p^{9} T^{5} + 21751402636 p^{18} T^{6} - 21464 p^{27} T^{7} + p^{36} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 485568 T + 213805349348 T^{2} + 90962990510119488 T^{3} + \)\(43\!\cdots\!26\)\( T^{4} + 90962990510119488 p^{9} T^{5} + 213805349348 p^{18} T^{6} + 485568 p^{27} T^{7} + p^{36} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 46828 T + 387090774370 T^{2} - 211853405521509608 T^{3} + \)\(91\!\cdots\!35\)\( T^{4} - 211853405521509608 p^{9} T^{5} + 387090774370 p^{18} T^{6} + 46828 p^{27} T^{7} + p^{36} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 430944 T + 1108884312086 T^{2} - 1716638356321396416 T^{3} + \)\(57\!\cdots\!51\)\( T^{4} - 1716638356321396416 p^{9} T^{5} + 1108884312086 p^{18} T^{6} - 430944 p^{27} T^{7} + p^{36} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 2580000 T + 33906695764316 T^{2} + 44547924253273908192 T^{3} + \)\(58\!\cdots\!94\)\( T^{4} + 44547924253273908192 p^{9} T^{5} + 33906695764316 p^{18} T^{6} + 2580000 p^{27} T^{7} + p^{36} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 6228604 T + 62868507171202 T^{2} + \)\(20\!\cdots\!20\)\( T^{3} + \)\(17\!\cdots\!79\)\( T^{4} + \)\(20\!\cdots\!20\)\( p^{9} T^{5} + 62868507171202 p^{18} T^{6} + 6228604 p^{27} T^{7} + p^{36} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 8995220 T + 497286327190186 T^{2} - \)\(34\!\cdots\!20\)\( T^{3} + \)\(95\!\cdots\!55\)\( T^{4} - \)\(34\!\cdots\!20\)\( p^{9} T^{5} + 497286327190186 p^{18} T^{6} - 8995220 p^{27} T^{7} + p^{36} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 22028736 T + 1135835206894238 T^{2} + \)\(17\!\cdots\!76\)\( T^{3} + \)\(12\!\cdots\!67\)\( p T^{4} + \)\(17\!\cdots\!76\)\( p^{9} T^{5} + 1135835206894238 p^{18} T^{6} + 22028736 p^{27} T^{7} + p^{36} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 21954176 T + 1056833312924332 T^{2} - \)\(23\!\cdots\!72\)\( T^{3} + \)\(53\!\cdots\!30\)\( T^{4} - \)\(23\!\cdots\!72\)\( p^{9} T^{5} + 1056833312924332 p^{18} T^{6} - 21954176 p^{27} T^{7} + p^{36} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 33437472 T + 3207667521708860 T^{2} + \)\(73\!\cdots\!40\)\( T^{3} + \)\(44\!\cdots\!78\)\( T^{4} + \)\(73\!\cdots\!40\)\( p^{9} T^{5} + 3207667521708860 p^{18} T^{6} + 33437472 p^{27} T^{7} + p^{36} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 111929472 T + 12127832562737876 T^{2} + \)\(69\!\cdots\!84\)\( T^{3} + \)\(48\!\cdots\!46\)\( T^{4} + \)\(69\!\cdots\!84\)\( p^{9} T^{5} + 12127832562737876 p^{18} T^{6} + 111929472 p^{27} T^{7} + p^{36} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 285328416 T + 55233276708774380 T^{2} + \)\(74\!\cdots\!40\)\( T^{3} + \)\(80\!\cdots\!66\)\( T^{4} + \)\(74\!\cdots\!40\)\( p^{9} T^{5} + 55233276708774380 p^{18} T^{6} + 285328416 p^{27} T^{7} + p^{36} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 36406592 T + 35662036806283636 T^{2} - \)\(12\!\cdots\!52\)\( T^{3} + \)\(57\!\cdots\!02\)\( T^{4} - \)\(12\!\cdots\!52\)\( p^{9} T^{5} + 35662036806283636 p^{18} T^{6} - 36406592 p^{27} T^{7} + p^{36} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 40399496 T + 54060073617597220 T^{2} - \)\(56\!\cdots\!60\)\( T^{3} + \)\(14\!\cdots\!10\)\( T^{4} - \)\(56\!\cdots\!60\)\( p^{9} T^{5} + 54060073617597220 p^{18} T^{6} - 40399496 p^{27} T^{7} + p^{36} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 99955872 T + 107604681472591430 T^{2} + \)\(31\!\cdots\!92\)\( T^{3} + \)\(55\!\cdots\!47\)\( T^{4} + \)\(31\!\cdots\!92\)\( p^{9} T^{5} + 107604681472591430 p^{18} T^{6} + 99955872 p^{27} T^{7} + p^{36} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 10196576 T + 155819188909561636 T^{2} - \)\(84\!\cdots\!96\)\( T^{3} + \)\(11\!\cdots\!62\)\( T^{4} - \)\(84\!\cdots\!96\)\( p^{9} T^{5} + 155819188909561636 p^{18} T^{6} - 10196576 p^{27} T^{7} + p^{36} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 54438704 T + 3397921806717220 p T^{2} - \)\(15\!\cdots\!00\)\( T^{3} + \)\(41\!\cdots\!66\)\( T^{4} - \)\(15\!\cdots\!00\)\( p^{9} T^{5} + 3397921806717220 p^{19} T^{6} - 54438704 p^{27} T^{7} + p^{36} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 54880032 T + 663591499736412596 T^{2} - \)\(23\!\cdots\!48\)\( T^{3} + \)\(17\!\cdots\!58\)\( T^{4} - \)\(23\!\cdots\!48\)\( p^{9} T^{5} + 663591499736412596 p^{18} T^{6} - 54880032 p^{27} T^{7} + p^{36} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 100706112 T + 1044224680704356894 T^{2} + \)\(38\!\cdots\!48\)\( T^{3} + \)\(48\!\cdots\!07\)\( T^{4} + \)\(38\!\cdots\!48\)\( p^{9} T^{5} + 1044224680704356894 p^{18} T^{6} + 100706112 p^{27} T^{7} + p^{36} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 1861020208 T + 2144895054783101668 T^{2} + \)\(22\!\cdots\!24\)\( T^{3} + \)\(23\!\cdots\!50\)\( T^{4} + \)\(22\!\cdots\!24\)\( p^{9} T^{5} + 2144895054783101668 p^{18} T^{6} + 1861020208 p^{27} T^{7} + p^{36} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32466824898873648227380571703, −6.65691706832265332167999454687, −6.57942080830860006281005400524, −6.31708827695928987576103160656, −6.28149578064259064561245096068, −5.71793548389203830907789870225, −5.52752419114222150146430742121, −5.33996377092197404590080716033, −5.20071703464730936711368009054, −4.63538827220440538208847598313, −4.60584884528084259917320907296, −4.56016186233141983298111910184, −4.16427248893161095610188116342, −3.93479816784518745086700683447, −3.59327932539441826909997095667, −3.50363603655694544589716587502, −3.50176915877964757242134792382, −2.73952374204521821406322660327, −2.51472992058441905387594366053, −2.41466115226730839562924284284, −2.24380705478354518484835997127, −1.55192640159782686713297109854, −1.48302932765465186601423864643, −1.34389169745399847288259234488, −1.15889250327543959993696377309, 0, 0, 0, 0, 1.15889250327543959993696377309, 1.34389169745399847288259234488, 1.48302932765465186601423864643, 1.55192640159782686713297109854, 2.24380705478354518484835997127, 2.41466115226730839562924284284, 2.51472992058441905387594366053, 2.73952374204521821406322660327, 3.50176915877964757242134792382, 3.50363603655694544589716587502, 3.59327932539441826909997095667, 3.93479816784518745086700683447, 4.16427248893161095610188116342, 4.56016186233141983298111910184, 4.60584884528084259917320907296, 4.63538827220440538208847598313, 5.20071703464730936711368009054, 5.33996377092197404590080716033, 5.52752419114222150146430742121, 5.71793548389203830907789870225, 6.28149578064259064561245096068, 6.31708827695928987576103160656, 6.57942080830860006281005400524, 6.65691706832265332167999454687, 7.32466824898873648227380571703

Graph of the $Z$-function along the critical line