Properties

Label 8-378e4-1.1-c1e4-0-4
Degree $8$
Conductor $20415837456$
Sign $1$
Analytic cond. $82.9995$
Root an. cond. $1.73733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 8·7-s + 3·16-s − 14·25-s − 16·28-s + 28·37-s − 8·43-s + 34·49-s − 4·64-s + 8·67-s − 40·79-s + 28·100-s + 52·109-s + 24·112-s + 26·121-s + 127-s + 131-s + 137-s + 139-s − 56·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 28·169-s + 16·172-s + ⋯
L(s)  = 1  − 4-s + 3.02·7-s + 3/4·16-s − 2.79·25-s − 3.02·28-s + 4.60·37-s − 1.21·43-s + 34/7·49-s − 1/2·64-s + 0.977·67-s − 4.50·79-s + 14/5·100-s + 4.98·109-s + 2.26·112-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 4.60·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.15·169-s + 1.21·172-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(82.9995\)
Root analytic conductor: \(1.73733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.330143512\)
\(L(\frac12)\) \(\approx\) \(2.330143512\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 35 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 35 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 65 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 133 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 151 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.248020643847419198410929074308, −7.88175738467019999506348158549, −7.81229356765347982834276473699, −7.65552021206789772386952219897, −7.54394187372462970620798312318, −7.13760509092754352747438475199, −6.84991170379380529438962191151, −6.12703243987095352421551891844, −6.12390283099408262641506106817, −6.04563459151078904046672920376, −5.52125640432607666596241530268, −5.45834006401551436258061214975, −4.93411973703737854504041244834, −4.75680924392216707947067771664, −4.70629313770613856950238198729, −4.15556038138719123885405847202, −4.08282557117265537752476112023, −3.94386026353510527376359751277, −3.41879298526214755288133422425, −2.71904355305484860998769327284, −2.58436935133502546713499710304, −2.09103980985007047506957425150, −1.51008882502341006757253193254, −1.48579618099667282894445045004, −0.65742208539132196488344514468, 0.65742208539132196488344514468, 1.48579618099667282894445045004, 1.51008882502341006757253193254, 2.09103980985007047506957425150, 2.58436935133502546713499710304, 2.71904355305484860998769327284, 3.41879298526214755288133422425, 3.94386026353510527376359751277, 4.08282557117265537752476112023, 4.15556038138719123885405847202, 4.70629313770613856950238198729, 4.75680924392216707947067771664, 4.93411973703737854504041244834, 5.45834006401551436258061214975, 5.52125640432607666596241530268, 6.04563459151078904046672920376, 6.12390283099408262641506106817, 6.12703243987095352421551891844, 6.84991170379380529438962191151, 7.13760509092754352747438475199, 7.54394187372462970620798312318, 7.65552021206789772386952219897, 7.81229356765347982834276473699, 7.88175738467019999506348158549, 8.248020643847419198410929074308

Graph of the $Z$-function along the critical line