# Properties

 Label 8-370e4-1.1-c1e4-0-1 Degree $8$ Conductor $18741610000$ Sign $1$ Analytic cond. $76.1930$ Root an. cond. $1.71885$ Motivic weight $1$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + 4-s + 4·5-s − 6·9-s − 12·11-s − 6·19-s + 4·20-s + 5·25-s + 24·29-s − 16·31-s − 6·36-s + 20·41-s − 12·44-s − 24·45-s + 2·49-s − 48·55-s + 30·59-s − 24·61-s − 64-s + 12·71-s − 6·76-s + 8·79-s + 9·81-s − 30·89-s − 24·95-s + 72·99-s + 5·100-s − 16·101-s + ⋯
 L(s)  = 1 + 1/2·4-s + 1.78·5-s − 2·9-s − 3.61·11-s − 1.37·19-s + 0.894·20-s + 25-s + 4.45·29-s − 2.87·31-s − 36-s + 3.12·41-s − 1.80·44-s − 3.57·45-s + 2/7·49-s − 6.47·55-s + 3.90·59-s − 3.07·61-s − 1/8·64-s + 1.42·71-s − 0.688·76-s + 0.900·79-s + 81-s − 3.17·89-s − 2.46·95-s + 7.23·99-s + 1/2·100-s − 1.59·101-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 Degree: $$8$$ Conductor: $$2^{4} \cdot 5^{4} \cdot 37^{4}$$ Sign: $1$ Analytic conductor: $$76.1930$$ Root analytic conductor: $$1.71885$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: induced by $\chi_{370} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(8,\ 2^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.168600740$$ $$L(\frac12)$$ $$\approx$$ $$1.168600740$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ $$1 - T^{2} + T^{4}$$
5$C_2^2$ $$1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4}$$
37$C_2^2$ $$1 + 47 T^{2} + p^{2} T^{4}$$
good3$C_2^2$ $$( 1 + p T^{2} + p^{2} T^{4} )^{2}$$
7$C_2^2$$\times$$C_2^2$ $$( 1 - 13 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} )$$
11$C_2$ $$( 1 + 3 T + p T^{2} )^{4}$$
13$C_2^3$ $$1 + 25 T^{2} + 456 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8}$$
17$C_2^3$ $$1 - 2 T^{2} - 285 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8}$$
19$C_2^2$ $$( 1 + 3 T - 10 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2}$$
23$C_2^2$ $$( 1 - 45 T^{2} + p^{2} T^{4} )^{2}$$
29$C_2$ $$( 1 - 6 T + p T^{2} )^{4}$$
31$C_2$ $$( 1 + 4 T + p T^{2} )^{4}$$
41$C_2^2$ $$( 1 - 10 T + 59 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2}$$
43$C_2^2$ $$( 1 - 82 T^{2} + p^{2} T^{4} )^{2}$$
47$C_2^2$ $$( 1 + 27 T^{2} + p^{2} T^{4} )^{2}$$
53$C_2^3$ $$1 + 6 T^{2} - 2773 T^{4} + 6 p^{2} T^{6} + p^{4} T^{8}$$
59$C_2^2$ $$( 1 - 15 T + 166 T^{2} - 15 p T^{3} + p^{2} T^{4} )^{2}$$
61$C_2^2$ $$( 1 + 12 T + 83 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2}$$
67$C_2^3$ $$1 + 130 T^{2} + 12411 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8}$$
71$C_2^2$ $$( 1 - 6 T - 35 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2}$$
73$C_2^2$ $$( 1 - 142 T^{2} + p^{2} T^{4} )^{2}$$
79$C_2$ $$( 1 - 17 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2}$$
83$C_2^3$ $$1 + 130 T^{2} + 10011 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8}$$
89$C_2^2$ $$( 1 + 15 T + 136 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2}$$
97$C_2^2$ $$( 1 - 190 T^{2} + p^{2} T^{4} )^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−8.179697184492945270803829271806, −8.154707599900620657938405971372, −7.903714484017101141703843967704, −7.64574026710054425710151173162, −7.18836893378786406348373422968, −6.90944550808177087228869834061, −6.85941695458242684411104117143, −6.33406710812973675245333743579, −6.12911843667100302064604015565, −5.88272133762083988293051309975, −5.60962180821293832263610493412, −5.58251888620118908566387145747, −5.33810577372484577096069110447, −4.93361890103380899736607386423, −4.79364145498103143262749446962, −4.35823241665747837807536057036, −3.98976550893068370746307652244, −3.46208207938565518537077697797, −2.85172604290185480837619227158, −2.81772696693861262975472687071, −2.47065844549861953470922904189, −2.42756932472951083495926522505, −2.15608283953491981811341272537, −1.34375886735816440452922574959, −0.40222237310878924378328645053, 0.40222237310878924378328645053, 1.34375886735816440452922574959, 2.15608283953491981811341272537, 2.42756932472951083495926522505, 2.47065844549861953470922904189, 2.81772696693861262975472687071, 2.85172604290185480837619227158, 3.46208207938565518537077697797, 3.98976550893068370746307652244, 4.35823241665747837807536057036, 4.79364145498103143262749446962, 4.93361890103380899736607386423, 5.33810577372484577096069110447, 5.58251888620118908566387145747, 5.60962180821293832263610493412, 5.88272133762083988293051309975, 6.12911843667100302064604015565, 6.33406710812973675245333743579, 6.85941695458242684411104117143, 6.90944550808177087228869834061, 7.18836893378786406348373422968, 7.64574026710054425710151173162, 7.903714484017101141703843967704, 8.154707599900620657938405971372, 8.179697184492945270803829271806