Properties

Label 8-33e8-1.1-c5e4-0-1
Degree $8$
Conductor $1.406\times 10^{12}$
Sign $1$
Analytic cond. $9.30580\times 10^{8}$
Root an. cond. $13.2158$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·2-s + 3·4-s − 42·5-s + 14·7-s − 57·8-s − 378·10-s − 886·13-s + 126·14-s + 1.05e3·16-s − 570·17-s − 1.33e3·19-s − 126·20-s − 1.26e3·23-s − 6.14e3·25-s − 7.97e3·26-s + 42·28-s + 1.02e4·29-s − 8.04e3·31-s + 1.65e3·32-s − 5.13e3·34-s − 588·35-s + 1.89e4·37-s − 1.20e4·38-s + 2.39e3·40-s − 3.00e3·41-s + 2.15e4·43-s − 1.13e4·46-s + ⋯
L(s)  = 1  + 1.59·2-s + 3/32·4-s − 0.751·5-s + 0.107·7-s − 0.314·8-s − 1.19·10-s − 1.45·13-s + 0.171·14-s + 1.02·16-s − 0.478·17-s − 0.850·19-s − 0.0704·20-s − 0.496·23-s − 1.96·25-s − 2.31·26-s + 0.0101·28-s + 2.25·29-s − 1.50·31-s + 0.286·32-s − 0.761·34-s − 0.0811·35-s + 2.27·37-s − 1.35·38-s + 0.236·40-s − 0.279·41-s + 1.77·43-s − 0.790·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(9.30580\times 10^{8}\)
Root analytic conductor: \(13.2158\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 3^{8} \cdot 11^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$C_2 \wr S_4$ \( 1 - 9 T + 39 p T^{2} - 309 p T^{3} + 941 p^{2} T^{4} - 309 p^{6} T^{5} + 39 p^{11} T^{6} - 9 p^{15} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 42 T + 1581 p T^{2} + 298638 T^{3} + 35774024 T^{4} + 298638 p^{5} T^{5} + 1581 p^{11} T^{6} + 42 p^{15} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 2 p T + 25261 T^{2} + 2055082 T^{3} + 344115460 T^{4} + 2055082 p^{5} T^{5} + 25261 p^{10} T^{6} - 2 p^{16} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 886 T + 809461 T^{2} + 496080238 T^{3} + 405938439172 T^{4} + 496080238 p^{5} T^{5} + 809461 p^{10} T^{6} + 886 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 570 T + 2270085 T^{2} - 1804796634 T^{3} + 1078768320248 T^{4} - 1804796634 p^{5} T^{5} + 2270085 p^{10} T^{6} + 570 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 + 1338 T + 7542517 T^{2} + 10474242858 T^{3} + 25064736574956 T^{4} + 10474242858 p^{5} T^{5} + 7542517 p^{10} T^{6} + 1338 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 1260 T + 7754880 T^{2} + 12979708092 T^{3} + 88859643423326 T^{4} + 12979708092 p^{5} T^{5} + 7754880 p^{10} T^{6} + 1260 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 10230 T + 93323813 T^{2} - 475634451006 T^{3} + 2588636637314532 T^{4} - 475634451006 p^{5} T^{5} + 93323813 p^{10} T^{6} - 10230 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 8042 T + 94978261 T^{2} + 417964095266 T^{3} + 3289572375041044 T^{4} + 417964095266 p^{5} T^{5} + 94978261 p^{10} T^{6} + 8042 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 18936 T + 376349398 T^{2} - 3936210595416 T^{3} + 41815812920398815 T^{4} - 3936210595416 p^{5} T^{5} + 376349398 p^{10} T^{6} - 18936 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 3006 T + 192374697 T^{2} + 651736053318 T^{3} + 33401079864830084 T^{4} + 651736053318 p^{5} T^{5} + 192374697 p^{10} T^{6} + 3006 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 21504 T + 294848956 T^{2} - 1575316024704 T^{3} + 10479524307735414 T^{4} - 1575316024704 p^{5} T^{5} + 294848956 p^{10} T^{6} - 21504 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 5916 T + 433873104 T^{2} - 302419745076 T^{3} + 94994293024440158 T^{4} - 302419745076 p^{5} T^{5} + 433873104 p^{10} T^{6} + 5916 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 48414 T + 1901445533 T^{2} + 54658035953766 T^{3} + 1202239744227438084 T^{4} + 54658035953766 p^{5} T^{5} + 1901445533 p^{10} T^{6} + 48414 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 30276 T + 2135304432 T^{2} + 44131848488100 T^{3} + 2027676021116746670 T^{4} + 44131848488100 p^{5} T^{5} + 2135304432 p^{10} T^{6} + 30276 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 106242 T + 6532906537 T^{2} + 280841840520642 T^{3} + 9186780257728975740 T^{4} + 280841840520642 p^{5} T^{5} + 6532906537 p^{10} T^{6} + 106242 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 57538 T + 4416412861 T^{2} + 157787648605138 T^{3} + 7497513505176486892 T^{4} + 157787648605138 p^{5} T^{5} + 4416412861 p^{10} T^{6} + 57538 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 + 45720 T + 4522588316 T^{2} + 205135961766264 T^{3} + 10871340808413470886 T^{4} + 205135961766264 p^{5} T^{5} + 4522588316 p^{10} T^{6} + 45720 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 11426 T + 7374900745 T^{2} - 74076180419162 T^{3} + 22044509882838983620 T^{4} - 74076180419162 p^{5} T^{5} + 7374900745 p^{10} T^{6} - 11426 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 68338 T + 8930204917 T^{2} - 465489883497874 T^{3} + 38131158729353014276 T^{4} - 465489883497874 p^{5} T^{5} + 8930204917 p^{10} T^{6} - 68338 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 146748 T + 14767913360 T^{2} - 834109700912028 T^{3} + 53639101259952424782 T^{4} - 834109700912028 p^{5} T^{5} + 14767913360 p^{10} T^{6} - 146748 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 89106 T + 23226988445 T^{2} - 1474906789358334 T^{3} + \)\(19\!\cdots\!44\)\( T^{4} - 1474906789358334 p^{5} T^{5} + 23226988445 p^{10} T^{6} - 89106 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 386120 T + 77496909178 T^{2} - 10297690878548432 T^{3} + \)\(10\!\cdots\!11\)\( T^{4} - 10297690878548432 p^{5} T^{5} + 77496909178 p^{10} T^{6} - 386120 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54277180534320800081225202163, −6.22967446421040574046815814182, −6.21512080191973271384064901265, −6.16219844551187089271639449010, −5.97793109996026982632677040455, −5.54518637926191790465238162976, −5.08989161232180192625052856278, −5.08579009604356281057788219747, −4.79381506730461942861477668324, −4.59078676129423295724637318827, −4.58810031271701788679273283715, −4.30730627455362387327728691341, −4.27458996431042015400687123668, −3.72444281870062964620088179347, −3.65889522108993258538122520681, −3.39291664238638439332104266807, −3.23575147661962760804069232226, −2.67163095369534413224019759568, −2.64894442161352282602631339943, −2.21574333519109647827440207732, −2.03674259195305722348268754548, −1.75646394850328481802451451213, −1.37164751205896542434976967234, −1.01730125235884949270475154813, −0.896635718532222146054939728821, 0, 0, 0, 0, 0.896635718532222146054939728821, 1.01730125235884949270475154813, 1.37164751205896542434976967234, 1.75646394850328481802451451213, 2.03674259195305722348268754548, 2.21574333519109647827440207732, 2.64894442161352282602631339943, 2.67163095369534413224019759568, 3.23575147661962760804069232226, 3.39291664238638439332104266807, 3.65889522108993258538122520681, 3.72444281870062964620088179347, 4.27458996431042015400687123668, 4.30730627455362387327728691341, 4.58810031271701788679273283715, 4.59078676129423295724637318827, 4.79381506730461942861477668324, 5.08579009604356281057788219747, 5.08989161232180192625052856278, 5.54518637926191790465238162976, 5.97793109996026982632677040455, 6.16219844551187089271639449010, 6.21512080191973271384064901265, 6.22967446421040574046815814182, 6.54277180534320800081225202163

Graph of the $Z$-function along the critical line