Properties

Label 8-33e8-1.1-c1e4-0-7
Degree $8$
Conductor $1.406\times 10^{12}$
Sign $1$
Analytic cond. $5717.68$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5·16-s + 24·17-s + 8·25-s − 12·29-s + 24·31-s − 12·37-s + 12·41-s + 12·49-s + 20·64-s − 24·67-s − 48·68-s − 24·83-s + 4·97-s − 16·100-s + 24·101-s + 16·103-s + 48·107-s + 24·116-s − 48·124-s + 127-s + 131-s + 137-s + 139-s + 24·148-s + 149-s + 151-s + ⋯
L(s)  = 1  − 4-s − 5/4·16-s + 5.82·17-s + 8/5·25-s − 2.22·29-s + 4.31·31-s − 1.97·37-s + 1.87·41-s + 12/7·49-s + 5/2·64-s − 2.93·67-s − 5.82·68-s − 2.63·83-s + 0.406·97-s − 8/5·100-s + 2.38·101-s + 1.57·103-s + 4.64·107-s + 2.22·116-s − 4.31·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.97·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(5717.68\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 11^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.129641215\)
\(L(\frac12)\) \(\approx\) \(4.129641215\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$C_2^2$ \( ( 1 + T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^3$ \( 1 - 8 T^{2} + 39 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 12 T^{2} + 86 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^3$ \( 1 + 191 T^{4} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 - 12 T + 67 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 44 T^{2} + 1110 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 6 T + 55 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 12 T + 86 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
41$D_{4}$ \( ( 1 - 6 T + 79 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 60 T^{2} + 4166 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 200 T^{2} + 15591 T^{4} - 200 p^{2} T^{6} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 188 T^{2} + 15366 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 120 T^{2} + p^{2} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 + 12 T + 122 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 236 T^{2} + 23574 T^{4} - 236 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 240 T^{2} + 24866 T^{4} - 240 p^{2} T^{6} + p^{4} T^{8} \)
79$D_4\times C_2$ \( 1 - 204 T^{2} + 19814 T^{4} - 204 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 + 12 T + 190 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 200 T^{2} + 24519 T^{4} - 200 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.15901030155878407331719741345, −6.81827449628234482064041230439, −6.78852667116849968258384100683, −6.15147375137983256210614214213, −6.13231009072525667738771282386, −5.87518275545777147718248524483, −5.66003355945651294873628852463, −5.57925922923502941948474451950, −5.27714493000366168947779133600, −4.96355565654586133239733407044, −4.68136264972373528801725023166, −4.61821961762401860156742153419, −4.44736280508665472381241058720, −3.87557070806318009246896135588, −3.83805922632564112381975736196, −3.49383957047404773436491444878, −3.13566021778699767677843421811, −3.01199844647480961693460681155, −2.87020849028568564162484460752, −2.50202572027507866532171620786, −1.77042917205826519928183409879, −1.75768412606207051868366068912, −1.05063964477033145930900136371, −0.816250183710423489464148460934, −0.68230968651203488465923674079, 0.68230968651203488465923674079, 0.816250183710423489464148460934, 1.05063964477033145930900136371, 1.75768412606207051868366068912, 1.77042917205826519928183409879, 2.50202572027507866532171620786, 2.87020849028568564162484460752, 3.01199844647480961693460681155, 3.13566021778699767677843421811, 3.49383957047404773436491444878, 3.83805922632564112381975736196, 3.87557070806318009246896135588, 4.44736280508665472381241058720, 4.61821961762401860156742153419, 4.68136264972373528801725023166, 4.96355565654586133239733407044, 5.27714493000366168947779133600, 5.57925922923502941948474451950, 5.66003355945651294873628852463, 5.87518275545777147718248524483, 6.13231009072525667738771282386, 6.15147375137983256210614214213, 6.78852667116849968258384100683, 6.81827449628234482064041230439, 7.15901030155878407331719741345

Graph of the $Z$-function along the critical line