Properties

Label 8-320e4-1.1-c2e4-0-2
Degree $8$
Conductor $10485760000$
Sign $1$
Analytic cond. $5780.16$
Root an. cond. $2.95285$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20·5-s − 28·13-s − 28·17-s + 250·25-s − 28·37-s − 200·41-s + 68·53-s − 120·61-s − 560·65-s − 28·73-s + 18·81-s − 560·85-s − 172·97-s + 408·101-s − 332·113-s − 364·121-s + 2.50e3·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 392·169-s + ⋯
L(s)  = 1  + 4·5-s − 2.15·13-s − 1.64·17-s + 10·25-s − 0.756·37-s − 4.87·41-s + 1.28·53-s − 1.96·61-s − 8.61·65-s − 0.383·73-s + 2/9·81-s − 6.58·85-s − 1.77·97-s + 4.03·101-s − 2.93·113-s − 3.00·121-s + 20·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 2.31·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(5780.16\)
Root analytic conductor: \(2.95285\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.965212534\)
\(L(\frac12)\) \(\approx\) \(3.965212534\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p T )^{4} \)
good3$C_2^3$ \( 1 - 2 p^{2} T^{4} + p^{8} T^{8} \)
7$C_2^3$ \( 1 - 178 T^{4} + p^{8} T^{8} \)
11$C_2^2$ \( ( 1 + 182 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2}( 1 + 24 T + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{2}( 1 + 30 T + p^{2} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2}( 1 + 22 T + p^{2} T^{2} )^{2} \)
23$C_2^3$ \( 1 + 61262 T^{4} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 - 1282 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1018 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 50 T + p^{2} T^{2} )^{4} \)
43$C_2^3$ \( 1 + 1853102 T^{4} + p^{8} T^{8} \)
47$C_2^3$ \( 1 - 1068658 T^{4} + p^{8} T^{8} \)
53$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )^{2}( 1 + 56 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - 3122 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
67$C_2^3$ \( 1 - 25029778 T^{4} + p^{8} T^{8} \)
71$C_2^2$ \( ( 1 + 5222 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 96 T + p^{2} T^{2} )^{2}( 1 + 110 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 11522 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 74812142 T^{4} + p^{8} T^{8} \)
89$C_2^2$ \( ( 1 - 14242 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 86 T + 3698 T^{2} + 86 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.488325864564110064581683256990, −8.062921832567536196073228203383, −7.48782368186654049772429293738, −7.46197642840250498827044796478, −6.91940553677748806329272712866, −6.84232245743665062645500094227, −6.58423626327924228612723213300, −6.48164058502388670360661652085, −6.27542103870411346160943133753, −5.79100704168248318847113850030, −5.54069434275770773466755425310, −5.20740305592310443953479439652, −5.10766120381115257430719227950, −5.05001222096255797289958278746, −4.54278384763710180356947004381, −4.41776675821689257190447966640, −3.69726692994974759735688889635, −3.18592380176611164734463271359, −2.85638087870136002659864614092, −2.66648193813883301703559552269, −2.19582484051172517402059104390, −1.98172176408769609344098022438, −1.65537253415396284051143400428, −1.42292377574634100821604015922, −0.37551774289463986235792382995, 0.37551774289463986235792382995, 1.42292377574634100821604015922, 1.65537253415396284051143400428, 1.98172176408769609344098022438, 2.19582484051172517402059104390, 2.66648193813883301703559552269, 2.85638087870136002659864614092, 3.18592380176611164734463271359, 3.69726692994974759735688889635, 4.41776675821689257190447966640, 4.54278384763710180356947004381, 5.05001222096255797289958278746, 5.10766120381115257430719227950, 5.20740305592310443953479439652, 5.54069434275770773466755425310, 5.79100704168248318847113850030, 6.27542103870411346160943133753, 6.48164058502388670360661652085, 6.58423626327924228612723213300, 6.84232245743665062645500094227, 6.91940553677748806329272712866, 7.46197642840250498827044796478, 7.48782368186654049772429293738, 8.062921832567536196073228203383, 8.488325864564110064581683256990

Graph of the $Z$-function along the critical line