Properties

Label 8-3200e4-1.1-c1e4-0-25
Degree $8$
Conductor $1048576.000\times 10^{8}$
Sign $1$
Analytic cond. $426293.$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 12·17-s + 12·41-s − 28·49-s − 4·73-s + 9·81-s + 36·89-s + 40·97-s + 36·113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 2/3·9-s + 2.91·17-s + 1.87·41-s − 4·49-s − 0.468·73-s + 81-s + 3.81·89-s + 4.06·97-s + 3.38·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(426293.\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.246609577\)
\(L(\frac12)\) \(\approx\) \(7.246609577\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T + T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{4} \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 129 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$ \( ( 1 - 18 T + 235 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.03596950952434510151763251639, −5.95036282545968668499885879007, −5.83167351959017090698842848675, −5.56798810906579322176147291580, −5.32111319638896904877513300947, −5.02204259149807134998799818029, −4.83810488360004118419695151736, −4.83517668010488866546000748035, −4.63587454720973309898370668866, −4.30792648405243523162388824805, −4.06055528157955106569751127146, −3.74654879658612356268018537287, −3.52906941042186193753182432290, −3.37632961412445304443922075408, −3.35258774200713434548406027476, −2.90896661734940116990221698119, −2.88523792875482247434817285879, −2.43551730141395238827047347628, −2.09517920993132586701589181508, −1.78470301512211342053828682831, −1.74400638007951193498457234961, −1.37463243675774357841767654189, −0.888759081092566096352428329528, −0.76459456404511481518675418543, −0.46331887140901201831646089021, 0.46331887140901201831646089021, 0.76459456404511481518675418543, 0.888759081092566096352428329528, 1.37463243675774357841767654189, 1.74400638007951193498457234961, 1.78470301512211342053828682831, 2.09517920993132586701589181508, 2.43551730141395238827047347628, 2.88523792875482247434817285879, 2.90896661734940116990221698119, 3.35258774200713434548406027476, 3.37632961412445304443922075408, 3.52906941042186193753182432290, 3.74654879658612356268018537287, 4.06055528157955106569751127146, 4.30792648405243523162388824805, 4.63587454720973309898370668866, 4.83517668010488866546000748035, 4.83810488360004118419695151736, 5.02204259149807134998799818029, 5.32111319638896904877513300947, 5.56798810906579322176147291580, 5.83167351959017090698842848675, 5.95036282545968668499885879007, 6.03596950952434510151763251639

Graph of the $Z$-function along the critical line