Properties

Label 8-3200e4-1.1-c1e4-0-20
Degree $8$
Conductor $1.049\times 10^{14}$
Sign $1$
Analytic cond. $426293.$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·9-s − 8·13-s + 8·37-s − 32·41-s − 8·49-s + 8·53-s + 30·81-s + 24·89-s + 64·117-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 8/3·9-s − 2.21·13-s + 1.31·37-s − 4.99·41-s − 8/7·49-s + 1.09·53-s + 10/3·81-s + 2.54·89-s + 5.91·117-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(426293.\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7792892518\)
\(L(\frac12)\) \(\approx\) \(0.7792892518\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
31$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 84 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 92 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 116 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.08908857462758199892468837793, −6.07122527898236167442688338020, −5.79836908330729837949274552652, −5.28169079227228822184655948533, −5.21211786172296417949901974329, −5.16214678653234380312878798541, −5.07303301412199841480781907130, −4.96057225008866568474642554658, −4.48449722759761663254132003071, −4.44251298507713104343141950704, −4.06960217301759343924509923632, −3.62485130918037994995132472084, −3.54423479194525388847170848966, −3.51004291827364760066328430634, −3.14577901283815069531045905981, −2.81151172318587781076890306636, −2.66528146503537979315023091741, −2.50283260455491166639476772092, −2.42876500413008220011429506859, −1.89035277069802775473803596217, −1.68938267814546071963517182339, −1.53288075109768247654198184965, −0.874179073735913092808819460420, −0.33472462835483728800459642227, −0.29593623331808071186782751564, 0.29593623331808071186782751564, 0.33472462835483728800459642227, 0.874179073735913092808819460420, 1.53288075109768247654198184965, 1.68938267814546071963517182339, 1.89035277069802775473803596217, 2.42876500413008220011429506859, 2.50283260455491166639476772092, 2.66528146503537979315023091741, 2.81151172318587781076890306636, 3.14577901283815069531045905981, 3.51004291827364760066328430634, 3.54423479194525388847170848966, 3.62485130918037994995132472084, 4.06960217301759343924509923632, 4.44251298507713104343141950704, 4.48449722759761663254132003071, 4.96057225008866568474642554658, 5.07303301412199841480781907130, 5.16214678653234380312878798541, 5.21211786172296417949901974329, 5.28169079227228822184655948533, 5.79836908330729837949274552652, 6.07122527898236167442688338020, 6.08908857462758199892468837793

Graph of the $Z$-function along the critical line