Properties

Label 8-3200e4-1.1-c1e4-0-2
Degree $8$
Conductor $1048576.000\times 10^{8}$
Sign $1$
Analytic cond. $426293.$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·9-s − 8·17-s − 24·49-s − 24·73-s + 30·81-s + 40·89-s − 56·97-s − 24·113-s + 28·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 64·153-s + 157-s + 163-s + 167-s + 44·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 8/3·9-s − 1.94·17-s − 3.42·49-s − 2.80·73-s + 10/3·81-s + 4.23·89-s − 5.68·97-s − 2.25·113-s + 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.17·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(426293.\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7301226798\)
\(L(\frac12)\) \(\approx\) \(0.7301226798\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 12 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 36 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 132 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.28049786903281198309620814719, −5.98563867070134465805728374853, −5.66486331006051289567532748417, −5.52139149652929169965783667543, −5.34306830944413835717122669374, −5.07131723960889633899974597066, −4.82187019493401783324380586399, −4.54032818442999549028517649244, −4.47974711623012337104437867282, −4.27192762817440422336270687679, −4.24486946256017848547731128396, −4.06619421509131137221735559091, −3.64532367899696013383387386827, −3.39736558326103303310485540522, −3.12779900861062155119519564464, −2.95157574290098704110352043690, −2.87966636786100734241288553139, −2.17953038049223532353195875735, −2.14969421541022719032455581492, −1.85281746153931228037677546394, −1.72784655922975377498203037578, −1.39948198062476815824663434938, −1.10976750820473401848153271075, −0.74332731440726444811768072178, −0.12334894695258653574349620972, 0.12334894695258653574349620972, 0.74332731440726444811768072178, 1.10976750820473401848153271075, 1.39948198062476815824663434938, 1.72784655922975377498203037578, 1.85281746153931228037677546394, 2.14969421541022719032455581492, 2.17953038049223532353195875735, 2.87966636786100734241288553139, 2.95157574290098704110352043690, 3.12779900861062155119519564464, 3.39736558326103303310485540522, 3.64532367899696013383387386827, 4.06619421509131137221735559091, 4.24486946256017848547731128396, 4.27192762817440422336270687679, 4.47974711623012337104437867282, 4.54032818442999549028517649244, 4.82187019493401783324380586399, 5.07131723960889633899974597066, 5.34306830944413835717122669374, 5.52139149652929169965783667543, 5.66486331006051289567532748417, 5.98563867070134465805728374853, 6.28049786903281198309620814719

Graph of the $Z$-function along the critical line