Properties

Label 8-31e8-1.1-c0e4-0-0
Degree $8$
Conductor $852891037441$
Sign $1$
Analytic cond. $0.0529080$
Root an. cond. $0.692532$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s + 7-s − 9-s − 4·10-s + 14-s − 18-s + 19-s − 4·20-s + 6·25-s + 28-s − 32-s − 4·35-s − 36-s + 38-s + 41-s + 4·45-s − 2·47-s + 49-s + 6·50-s + 59-s − 63-s − 64-s + 8·67-s − 4·70-s + 71-s + ⋯
L(s)  = 1  + 2-s + 4-s − 4·5-s + 7-s − 9-s − 4·10-s + 14-s − 18-s + 19-s − 4·20-s + 6·25-s + 28-s − 32-s − 4·35-s − 36-s + 38-s + 41-s + 4·45-s − 2·47-s + 49-s + 6·50-s + 59-s − 63-s − 64-s + 8·67-s − 4·70-s + 71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(31^{8}\)
Sign: $1$
Analytic conductor: \(0.0529080\)
Root analytic conductor: \(0.692532\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 31^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6389026399\)
\(L(\frac12)\) \(\approx\) \(0.6389026399\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad31 \( 1 \)
good2$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
3$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
5$C_2$ \( ( 1 + T + T^{2} )^{4} \)
7$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
11$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
13$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
23$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
29$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
43$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
47$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
67$C_1$ \( ( 1 - T )^{8} \)
71$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
73$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
79$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
83$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
89$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
97$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.39745140265450717735596783736, −7.36202380002155801657416394872, −7.03021885067196271822906544245, −6.74687668537547120398363177976, −6.58543501692979862242916410041, −6.39132316265927062708174563964, −5.90119211391729129107191851526, −5.61640950188835646776086368368, −5.58962474294699969164112923343, −5.38459402420678534271156286873, −4.92070586494791923869689276324, −4.74563035446808683017939455733, −4.70309477190647836673756099552, −4.15823935514117878179352947406, −3.99992463075727683850497885626, −3.91402161414175759583179288958, −3.41600072498515458727613160522, −3.40132014597364513401999463594, −3.38262884136449105992825694290, −3.07408450536182380060690743409, −2.22380342541582270248557549973, −2.18994136627161153429654453173, −2.12279685446713081119735335241, −0.990534801976033516665361488151, −0.67741350491287073570256142602, 0.67741350491287073570256142602, 0.990534801976033516665361488151, 2.12279685446713081119735335241, 2.18994136627161153429654453173, 2.22380342541582270248557549973, 3.07408450536182380060690743409, 3.38262884136449105992825694290, 3.40132014597364513401999463594, 3.41600072498515458727613160522, 3.91402161414175759583179288958, 3.99992463075727683850497885626, 4.15823935514117878179352947406, 4.70309477190647836673756099552, 4.74563035446808683017939455733, 4.92070586494791923869689276324, 5.38459402420678534271156286873, 5.58962474294699969164112923343, 5.61640950188835646776086368368, 5.90119211391729129107191851526, 6.39132316265927062708174563964, 6.58543501692979862242916410041, 6.74687668537547120398363177976, 7.03021885067196271822906544245, 7.36202380002155801657416394872, 7.39745140265450717735596783736

Graph of the $Z$-function along the critical line