| L(s)  = 1 | + 184·31-s                                                             + 296·61-s                                                                                                                         − 484·121-s             + 127-s         + 131-s             + 137-s     + 139-s                     + 149-s     + 151-s             + 157-s             + 163-s         + 167-s             + 173-s             + 179-s     + 181-s                     + 191-s     + 193-s         + 197-s     + 199-s                         + 211-s                         + 223-s         + 227-s     + 229-s         + 233-s             + 239-s     + 241-s                     + 251-s  + ⋯ | 
| L(s)  = 1 | + 5.93·31-s                                                             + 4.85·61-s                                                                                                                         − 4·121-s             + 0.00787·127-s         + 0.00763·131-s             + 0.00729·137-s     + 0.00719·139-s                     + 0.00671·149-s     + 0.00662·151-s             + 0.00636·157-s             + 0.00613·163-s         + 0.00598·167-s             + 0.00578·173-s             + 0.00558·179-s     + 0.00552·181-s                     + 0.00523·191-s     + 0.00518·193-s         + 0.00507·197-s     + 0.00502·199-s                         + 0.00473·211-s                         + 0.00448·223-s         + 0.00440·227-s     + 0.00436·229-s         + 0.00429·233-s             + 0.00418·239-s     + 0.00414·241-s                     + 0.00398·251-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{3}{2})\) | \(\approx\) | \(5.609762658\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(5.609762658\) | 
    
        
      | \(L(2)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $\Gal(F_p)$ | $F_p(T)$ | 
|---|
| bad | 2 |  | \( 1 \) | 
|  | 3 |  | \( 1 \) | 
|  | 5 |  | \( 1 \) | 
| good | 7 | $C_2^3$ | \( 1 + 4034 T^{4} + p^{8} T^{8} \) | 
|  | 11 | $C_2$ | \( ( 1 + p^{2} T^{2} )^{4} \) | 
|  | 13 | $C_2^3$ | \( 1 - 35806 T^{4} + p^{8} T^{8} \) | 
|  | 17 | $C_2^2$ | \( ( 1 + p^{4} T^{4} )^{2} \) | 
|  | 19 | $C_2^2$ | \( ( 1 - 46 T^{2} + p^{4} T^{4} )^{2} \) | 
|  | 23 | $C_2^2$ | \( ( 1 + p^{4} T^{4} )^{2} \) | 
|  | 29 | $C_1$$\times$$C_1$ | \( ( 1 - p T )^{4}( 1 + p T )^{4} \) | 
|  | 31 | $C_2$ | \( ( 1 - 46 T + p^{2} T^{2} )^{4} \) | 
|  | 37 | $C_2^3$ | \( 1 + 503522 T^{4} + p^{8} T^{8} \) | 
|  | 41 | $C_2$ | \( ( 1 + p^{2} T^{2} )^{4} \) | 
|  | 43 | $C_2^3$ | \( 1 + 3492194 T^{4} + p^{8} T^{8} \) | 
|  | 47 | $C_2^2$ | \( ( 1 + p^{4} T^{4} )^{2} \) | 
|  | 53 | $C_2^2$ | \( ( 1 + p^{4} T^{4} )^{2} \) | 
|  | 59 | $C_1$$\times$$C_1$ | \( ( 1 - p T )^{4}( 1 + p T )^{4} \) | 
|  | 61 | $C_2$ | \( ( 1 - 74 T + p^{2} T^{2} )^{4} \) | 
|  | 67 | $C_2^3$ | \( 1 - 5421406 T^{4} + p^{8} T^{8} \) | 
|  | 71 | $C_2$ | \( ( 1 + p^{2} T^{2} )^{4} \) | 
|  | 73 | $C_2^3$ | \( 1 + 16169282 T^{4} + p^{8} T^{8} \) | 
|  | 79 | $C_2^2$ | \( ( 1 + 7682 T^{2} + p^{4} T^{4} )^{2} \) | 
|  | 83 | $C_2^2$ | \( ( 1 + p^{4} T^{4} )^{2} \) | 
|  | 89 | $C_1$$\times$$C_1$ | \( ( 1 - p T )^{4}( 1 + p T )^{4} \) | 
|  | 97 | $C_2^3$ | \( 1 + 176908034 T^{4} + p^{8} T^{8} \) | 
| show more |  |  | 
| show less |  |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.12442683250916585350741630207, −6.70624121591675204212595273058, −6.61813048326250707866231021230, −6.43258148004286775186212401563, −6.21918074871280658353886635860, −5.90549985841461974267805116601, −5.58544857845981424724714210737, −5.56645042970157539328072559409, −5.08594214117884969554658000570, −4.95676927869165579185291317111, −4.50355708237636304858609504057, −4.46720611373852692352461655458, −4.46174218951482174865328142362, −3.79328135650175804894968792440, −3.66956336172162189192948292771, −3.51559003293538094290935847549, −2.95196050495942844086382577219, −2.66922462444759398287723210349, −2.54878878664381889802503182251, −2.40368506156744287379014372382, −1.90290192340603316414912275809, −1.35844598773133422633563236109, −0.996885638470349676740755361579, −0.826086511852680433308814628223, −0.41330860879752054591181177297, 
0.41330860879752054591181177297, 0.826086511852680433308814628223, 0.996885638470349676740755361579, 1.35844598773133422633563236109, 1.90290192340603316414912275809, 2.40368506156744287379014372382, 2.54878878664381889802503182251, 2.66922462444759398287723210349, 2.95196050495942844086382577219, 3.51559003293538094290935847549, 3.66956336172162189192948292771, 3.79328135650175804894968792440, 4.46174218951482174865328142362, 4.46720611373852692352461655458, 4.50355708237636304858609504057, 4.95676927869165579185291317111, 5.08594214117884969554658000570, 5.56645042970157539328072559409, 5.58544857845981424724714210737, 5.90549985841461974267805116601, 6.21918074871280658353886635860, 6.43258148004286775186212401563, 6.61813048326250707866231021230, 6.70624121591675204212595273058, 7.12442683250916585350741630207
