Properties

Label 8-3072e4-1.1-c0e4-0-2
Degree $8$
Conductor $8.906\times 10^{13}$
Sign $1$
Analytic cond. $5.52475$
Root an. cond. $1.23819$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·49-s − 81-s − 8·97-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
L(s)  = 1  + 4·49-s − 81-s − 8·97-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{40} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(5.52475\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{40} \cdot 3^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.373027916\)
\(L(\frac12)\) \(\approx\) \(1.373027916\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + T^{4} \)
good5$C_2^2$ \( ( 1 + T^{4} )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
11$C_2^2$ \( ( 1 + T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + T^{4} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + T^{4} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2^2$ \( ( 1 + T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + T^{4} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_1$ \( ( 1 + T )^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.42785414255528850372055491136, −5.94094145167146399279470691750, −5.84708554138472942478538196571, −5.75452046609404865511276035549, −5.70008998277433213533701522031, −5.43063973870499996027286541794, −5.12709580101326776447169180230, −4.98295731119253467662722568788, −4.81478377608992146015288375312, −4.32620683929509160746485781991, −4.24377471230616338001811570280, −4.16230907033899008918432432400, −3.89702041163973258740634789180, −3.77662218771910359513202118686, −3.48088156479517302531132840367, −3.06496364151215791319726696955, −2.74198755636911149032372621669, −2.72425410088202730598982268643, −2.68939251459845200889645947595, −2.15055032143309626007799534134, −1.95712338329204378325968463816, −1.53350743937574894770540309698, −1.36725538656361626900124952109, −0.994218263864976680754827617339, −0.51063105119599922290331032342, 0.51063105119599922290331032342, 0.994218263864976680754827617339, 1.36725538656361626900124952109, 1.53350743937574894770540309698, 1.95712338329204378325968463816, 2.15055032143309626007799534134, 2.68939251459845200889645947595, 2.72425410088202730598982268643, 2.74198755636911149032372621669, 3.06496364151215791319726696955, 3.48088156479517302531132840367, 3.77662218771910359513202118686, 3.89702041163973258740634789180, 4.16230907033899008918432432400, 4.24377471230616338001811570280, 4.32620683929509160746485781991, 4.81478377608992146015288375312, 4.98295731119253467662722568788, 5.12709580101326776447169180230, 5.43063973870499996027286541794, 5.70008998277433213533701522031, 5.75452046609404865511276035549, 5.84708554138472942478538196571, 5.94094145167146399279470691750, 6.42785414255528850372055491136

Graph of the $Z$-function along the critical line