Properties

Label 8-3024e4-1.1-c0e4-0-2
Degree $8$
Conductor $8.362\times 10^{13}$
Sign $1$
Analytic cond. $5.18747$
Root an. cond. $1.22848$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 2·13-s + 2·17-s + 6·25-s − 2·29-s + 2·37-s + 2·41-s + 49-s − 2·53-s + 8·65-s − 2·73-s + 8·85-s + 2·89-s + 2·97-s − 4·101-s + 2·109-s − 2·113-s + 2·121-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 4·5-s + 2·13-s + 2·17-s + 6·25-s − 2·29-s + 2·37-s + 2·41-s + 49-s − 2·53-s + 8·65-s − 2·73-s + 8·85-s + 2·89-s + 2·97-s − 4·101-s + 2·109-s − 2·113-s + 2·121-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5.18747\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(5.485887775\)
\(L(\frac12)\) \(\approx\) \(5.485887775\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
good5$C_2$ \( ( 1 - T + T^{2} )^{4} \)
11$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
29$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.21746511288709485677171394781, −5.97362816935965176699709774405, −5.93125340005176059779962328998, −5.91378962935762865518366610226, −5.72985335025634246474894284283, −5.47457360067674072990355435016, −5.23622848318525716016595415803, −5.18187938329127415530572722742, −5.04427850440481505862219094649, −4.38336218551121490118980430582, −4.24274434810113407003037279543, −4.12976162721740679816401452201, −4.08011534403630535356001535356, −3.45945826878210643824807223350, −3.30950899098424419667728438376, −3.17377534971714774847937605544, −3.04024375250871161177008710990, −2.40337941388952180740836899914, −2.30700318763082098220377092855, −2.27283431008472217328534827076, −1.86144454536806154846744435504, −1.71885085858526978628349529123, −1.30117087454715303637527662235, −1.14135811186556960384391995694, −1.02919977329600778195907393244, 1.02919977329600778195907393244, 1.14135811186556960384391995694, 1.30117087454715303637527662235, 1.71885085858526978628349529123, 1.86144454536806154846744435504, 2.27283431008472217328534827076, 2.30700318763082098220377092855, 2.40337941388952180740836899914, 3.04024375250871161177008710990, 3.17377534971714774847937605544, 3.30950899098424419667728438376, 3.45945826878210643824807223350, 4.08011534403630535356001535356, 4.12976162721740679816401452201, 4.24274434810113407003037279543, 4.38336218551121490118980430582, 5.04427850440481505862219094649, 5.18187938329127415530572722742, 5.23622848318525716016595415803, 5.47457360067674072990355435016, 5.72985335025634246474894284283, 5.91378962935762865518366610226, 5.93125340005176059779962328998, 5.97362816935965176699709774405, 6.21746511288709485677171394781

Graph of the $Z$-function along the critical line