Properties

Label 8-2e36-1.1-c3e4-0-6
Degree $8$
Conductor $68719476736$
Sign $1$
Analytic cond. $832806.$
Root an. cond. $5.49626$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 44·5-s + 92·13-s + 384·17-s + 968·25-s − 412·29-s + 300·37-s − 68·49-s − 1.30e3·53-s + 156·61-s − 4.04e3·65-s + 1.26e3·81-s − 1.68e4·85-s + 1.85e3·97-s − 3.79e3·101-s − 2.33e3·109-s − 4.47e3·113-s − 1.61e4·125-s + 127-s + 131-s + 137-s + 139-s + 1.81e4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 3.93·5-s + 1.96·13-s + 5.47·17-s + 7.74·25-s − 2.63·29-s + 1.33·37-s − 0.198·49-s − 3.36·53-s + 0.327·61-s − 7.72·65-s + 1.73·81-s − 21.5·85-s + 1.94·97-s − 3.73·101-s − 2.04·109-s − 3.72·113-s − 11.5·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 10.3·145-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36}\)
Sign: $1$
Analytic conductor: \(832806.\)
Root analytic conductor: \(5.49626\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(1.709168565\)
\(L(\frac12)\) \(\approx\) \(1.709168565\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^3$ \( 1 - 1262 T^{4} + p^{12} T^{8} \)
5$C_2^2$ \( ( 1 + 22 T + 242 T^{2} + 22 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 34 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 3050318 T^{4} + p^{12} T^{8} \)
13$C_2^2$ \( ( 1 - 46 T + 1058 T^{2} - 46 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 96 T + p^{3} T^{2} )^{4} \)
19$C_2^3$ \( 1 - 89434798 T^{4} + p^{12} T^{8} \)
23$C_2^2$ \( ( 1 - 10814 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 206 T + 21218 T^{2} + 206 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 20862 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 150 T + 11250 T^{2} - 150 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 40498 T^{2} + p^{6} T^{4} )^{2} \)
43$C_2^3$ \( 1 - 11798591182 T^{4} + p^{12} T^{8} \)
47$C_2^2$ \( ( 1 + 199646 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 650 T + 211250 T^{2} + 650 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 878 p^{4} T^{4} + p^{12} T^{8} \)
61$C_2^2$ \( ( 1 - 78 T + 3042 T^{2} - 78 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 123064007662 T^{4} + p^{12} T^{8} \)
71$C_2^2$ \( ( 1 - 581342 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 517010 T^{2} + p^{6} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
83$C_2^3$ \( 1 - 298648058542 T^{4} + p^{12} T^{8} \)
89$C_2^2$ \( ( 1 + 578162 T^{2} + p^{6} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 464 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64535564168918625356929155930, −7.45457091214881293531960383679, −7.36262623896528836110991739681, −6.53432318621095343605342533876, −6.51496059447431769405906220425, −6.45739200047669362457487467224, −5.77764011744220118923295571334, −5.76107694988434670238034038822, −5.27319098637975968427015801394, −5.21041150704074062722617259788, −5.11415009297821671833670464159, −4.39753156751527706738109482508, −4.05459464157130533102563451540, −3.95575408382737790645054972011, −3.94130864180529585467066875575, −3.49460106834891121801781020897, −3.27947815127603608493137909478, −3.12403143537774558805358677609, −3.10274139568286316139319854907, −2.33653512108804285997846456205, −1.32443342311444208329498893850, −1.29588081089866431592655486336, −1.28900103497461162238080410108, −0.45318681212090093734765084899, −0.36034207165489900106262885767, 0.36034207165489900106262885767, 0.45318681212090093734765084899, 1.28900103497461162238080410108, 1.29588081089866431592655486336, 1.32443342311444208329498893850, 2.33653512108804285997846456205, 3.10274139568286316139319854907, 3.12403143537774558805358677609, 3.27947815127603608493137909478, 3.49460106834891121801781020897, 3.94130864180529585467066875575, 3.95575408382737790645054972011, 4.05459464157130533102563451540, 4.39753156751527706738109482508, 5.11415009297821671833670464159, 5.21041150704074062722617259788, 5.27319098637975968427015801394, 5.76107694988434670238034038822, 5.77764011744220118923295571334, 6.45739200047669362457487467224, 6.51496059447431769405906220425, 6.53432318621095343605342533876, 7.36262623896528836110991739681, 7.45457091214881293531960383679, 7.64535564168918625356929155930

Graph of the $Z$-function along the critical line