Properties

Label 8-2e36-1.1-c3e4-0-3
Degree $8$
Conductor $68719476736$
Sign $1$
Analytic cond. $832806.$
Root an. cond. $5.49626$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·3-s + 96·9-s + 48·11-s + 80·17-s − 560·19-s − 156·25-s − 176·27-s − 768·33-s + 952·41-s − 432·43-s + 52·49-s − 1.28e3·51-s + 8.96e3·57-s + 16·59-s + 272·67-s + 1.76e3·73-s + 2.49e3·75-s − 562·81-s + 2.48e3·83-s + 1.44e3·89-s + 2.41e3·97-s + 4.60e3·99-s − 2.89e3·107-s + 1.88e3·113-s − 320·121-s − 1.52e4·123-s + 127-s + ⋯
L(s)  = 1  − 3.07·3-s + 32/9·9-s + 1.31·11-s + 1.14·17-s − 6.76·19-s − 1.24·25-s − 1.25·27-s − 4.05·33-s + 3.62·41-s − 1.53·43-s + 0.151·49-s − 3.51·51-s + 20.8·57-s + 0.0353·59-s + 0.495·67-s + 2.82·73-s + 3.84·75-s − 0.770·81-s + 3.27·83-s + 1.71·89-s + 2.52·97-s + 4.67·99-s − 2.61·107-s + 1.56·113-s − 0.240·121-s − 11.1·123-s + 0.000698·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36}\)
Sign: $1$
Analytic conductor: \(832806.\)
Root analytic conductor: \(5.49626\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(0.6066094830\)
\(L(\frac12)\) \(\approx\) \(0.6066094830\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_{4}$ \( ( 1 + 8 T + 16 p T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
5$D_4\times C_2$ \( 1 + 156 T^{2} + 14806 T^{4} + 156 p^{6} T^{6} + p^{12} T^{8} \)
7$D_4\times C_2$ \( 1 - 52 T^{2} + 213446 T^{4} - 52 p^{6} T^{6} + p^{12} T^{8} \)
11$D_{4}$ \( ( 1 - 24 T + 1024 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 + 4220 T^{2} + 5918 p^{3} T^{4} + 4220 p^{6} T^{6} + p^{12} T^{8} \)
17$D_{4}$ \( ( 1 - 40 T + 8818 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 280 T + 33296 T^{2} + 280 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 20620 T^{2} + 207523206 T^{4} + 20620 p^{6} T^{6} + p^{12} T^{8} \)
29$D_4\times C_2$ \( 1 + 11580 T^{2} - 480509258 T^{4} + 11580 p^{6} T^{6} + p^{12} T^{8} \)
31$D_4\times C_2$ \( 1 + 43836 T^{2} + 1862878214 T^{4} + 43836 p^{6} T^{6} + p^{12} T^{8} \)
37$D_4\times C_2$ \( 1 + 125212 T^{2} + 7910484054 T^{4} + 125212 p^{6} T^{6} + p^{12} T^{8} \)
41$C_2$ \( ( 1 - 238 T + p^{3} T^{2} )^{4} \)
43$D_{4}$ \( ( 1 + 216 T + 170480 T^{2} + 216 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 322876 T^{2} + 47413040454 T^{4} + 322876 p^{6} T^{6} + p^{12} T^{8} \)
53$D_4\times C_2$ \( 1 + 261660 T^{2} + 59349543958 T^{4} + 261660 p^{6} T^{6} + p^{12} T^{8} \)
59$D_{4}$ \( ( 1 - 8 T + 293536 T^{2} - 8 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 898492 T^{2} + 304846294326 T^{4} + 898492 p^{6} T^{6} + p^{12} T^{8} \)
67$D_{4}$ \( ( 1 - 136 T - 52288 T^{2} - 136 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 17108 p T^{2} + 622466215110 T^{4} + 17108 p^{7} T^{6} + p^{12} T^{8} \)
73$D_{4}$ \( ( 1 - 880 T + 654834 T^{2} - 880 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 986492 T^{2} + 697242115910 T^{4} + 986492 p^{6} T^{6} + p^{12} T^{8} \)
83$D_{4}$ \( ( 1 - 1240 T + 1524256 T^{2} - 1240 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 720 T + 1369170 T^{2} - 720 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 1208 T + 1445330 T^{2} - 1208 p^{3} T^{3} + p^{6} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29968215020007534626160324155, −6.85204537572159108200975128719, −6.67348043557156076080513248524, −6.52944205409632806011175540899, −6.44738784661545298789924740477, −6.06200870652719411885991756647, −5.98070399252606223990117018328, −5.85501069043159840155619940825, −5.79829600383047609134611165599, −5.16266309275195599363542470368, −4.95293281647207126740079571017, −4.74150656790371910999434553566, −4.45761604988537812278633731788, −4.27184468437409879606117377566, −3.83960454197428705395112995134, −3.67590954518820733104335670349, −3.63226971483827101216694406734, −2.71439493798218086274732677457, −2.26756724690302123273618989500, −2.07418535104778156235308602193, −2.02403485884367126738557934109, −1.33631274299515937273930190580, −0.65681245450044742944107879089, −0.48085392411344382587300748032, −0.33003132777592774114151941500, 0.33003132777592774114151941500, 0.48085392411344382587300748032, 0.65681245450044742944107879089, 1.33631274299515937273930190580, 2.02403485884367126738557934109, 2.07418535104778156235308602193, 2.26756724690302123273618989500, 2.71439493798218086274732677457, 3.63226971483827101216694406734, 3.67590954518820733104335670349, 3.83960454197428705395112995134, 4.27184468437409879606117377566, 4.45761604988537812278633731788, 4.74150656790371910999434553566, 4.95293281647207126740079571017, 5.16266309275195599363542470368, 5.79829600383047609134611165599, 5.85501069043159840155619940825, 5.98070399252606223990117018328, 6.06200870652719411885991756647, 6.44738784661545298789924740477, 6.52944205409632806011175540899, 6.67348043557156076080513248524, 6.85204537572159108200975128719, 7.29968215020007534626160324155

Graph of the $Z$-function along the critical line