Properties

Label 8-2e36-1.1-c1e4-0-2
Degree $8$
Conductor $68719476736$
Sign $1$
Analytic cond. $279.375$
Root an. cond. $2.02196$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·17-s − 4·25-s + 8·41-s − 12·49-s − 32·73-s − 18·81-s + 32·89-s + 48·97-s − 40·113-s + 32·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 28·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 3.88·17-s − 4/5·25-s + 1.24·41-s − 1.71·49-s − 3.74·73-s − 2·81-s + 3.39·89-s + 4.87·97-s − 3.76·113-s + 2.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.15·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36}\)
Sign: $1$
Analytic conductor: \(279.375\)
Root analytic conductor: \(2.02196\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.790664272\)
\(L(\frac12)\) \(\approx\) \(2.790664272\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 64 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 112 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 80 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 112 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69266512566471474131032569388, −7.65509637645303748716351251470, −7.59322659337975999846162825759, −7.46516106364732171144236711857, −6.81013914606852552902760015025, −6.57626597887461464462409569998, −6.54267158937272220441311735576, −5.95208375245605713397282951722, −5.88746771670892961778490739202, −5.64221698087336796276120606526, −5.58078468071887640583841488005, −5.12168398279132397412047199929, −4.94282607564432262407122132913, −4.45366493274182597385844681408, −4.41789960736634217717900753342, −3.99876985566059403257786034123, −3.45040604903541744310470265052, −3.41340310559163132884020181631, −3.24905262027254111206400767098, −2.82726879506261276505943020536, −2.49530337705237636829552183797, −1.82352945209908855423593239363, −1.63499018798053959517818857357, −1.12086998888940462161330765088, −0.62198359824054923700143727844, 0.62198359824054923700143727844, 1.12086998888940462161330765088, 1.63499018798053959517818857357, 1.82352945209908855423593239363, 2.49530337705237636829552183797, 2.82726879506261276505943020536, 3.24905262027254111206400767098, 3.41340310559163132884020181631, 3.45040604903541744310470265052, 3.99876985566059403257786034123, 4.41789960736634217717900753342, 4.45366493274182597385844681408, 4.94282607564432262407122132913, 5.12168398279132397412047199929, 5.58078468071887640583841488005, 5.64221698087336796276120606526, 5.88746771670892961778490739202, 5.95208375245605713397282951722, 6.54267158937272220441311735576, 6.57626597887461464462409569998, 6.81013914606852552902760015025, 7.46516106364732171144236711857, 7.59322659337975999846162825759, 7.65509637645303748716351251470, 7.69266512566471474131032569388

Graph of the $Z$-function along the critical line