Properties

Label 8-2e36-1.1-c1e4-0-0
Degree $8$
Conductor $68719476736$
Sign $1$
Analytic cond. $279.375$
Root an. cond. $2.02196$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20·25-s + 24·41-s − 28·49-s + 14·81-s − 72·113-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  + 4·25-s + 3.74·41-s − 4·49-s + 14/9·81-s − 6.77·113-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36}\)
Sign: $1$
Analytic conductor: \(279.375\)
Root analytic conductor: \(2.02196\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.516183881\)
\(L(\frac12)\) \(\approx\) \(2.516183881\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
5$C_2$ \( ( 1 - p T^{2} )^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{4} \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
43$C_2^2$$\times$$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2^2$$\times$$C_2^2$ \( ( 1 - 20 T + 200 T^{2} - 20 p T^{3} + p^{2} T^{4} )( 1 + 20 T + 200 T^{2} + 20 p T^{3} + p^{2} T^{4} ) \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 142 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$ \( ( 1 + 146 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 94 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.979345077418681051443297953855, −7.63465721542500235810954265133, −7.38173045313346583711875392516, −7.22309775095364051679111550852, −6.73824170841114833832150493248, −6.58355944939104729645381734824, −6.56722651309633163221219986120, −6.21755866669404717034785336889, −6.09746544691457535855694962103, −5.44765212451251338442439033566, −5.38854845715335476265232535374, −5.05457185027840798971569131342, −4.97727103268859011188798792062, −4.56864900056833614873786964564, −4.34981363071243404222767923230, −3.97530755884125997256431267905, −3.84681997004157914488110334242, −3.17128070912315703545804936118, −3.08003692528069106822984515135, −2.75857226476940644887552845611, −2.58822652232883850052671489836, −2.05708354034419981101688183479, −1.38547780263326052654132257639, −1.22378329188169540497888985648, −0.57884147717753849538656527135, 0.57884147717753849538656527135, 1.22378329188169540497888985648, 1.38547780263326052654132257639, 2.05708354034419981101688183479, 2.58822652232883850052671489836, 2.75857226476940644887552845611, 3.08003692528069106822984515135, 3.17128070912315703545804936118, 3.84681997004157914488110334242, 3.97530755884125997256431267905, 4.34981363071243404222767923230, 4.56864900056833614873786964564, 4.97727103268859011188798792062, 5.05457185027840798971569131342, 5.38854845715335476265232535374, 5.44765212451251338442439033566, 6.09746544691457535855694962103, 6.21755866669404717034785336889, 6.56722651309633163221219986120, 6.58355944939104729645381734824, 6.73824170841114833832150493248, 7.22309775095364051679111550852, 7.38173045313346583711875392516, 7.63465721542500235810954265133, 7.979345077418681051443297953855

Graph of the $Z$-function along the critical line