Properties

Label 8-2842e4-1.1-c1e4-0-2
Degree $8$
Conductor $6.524\times 10^{13}$
Sign $1$
Analytic cond. $265219.$
Root an. cond. $4.76376$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 10·4-s − 20·8-s − 5·9-s − 10·11-s + 35·16-s + 20·18-s + 40·22-s − 15·25-s + 4·29-s − 56·32-s − 50·36-s + 12·37-s + 6·43-s − 100·44-s + 60·50-s − 38·53-s − 16·58-s + 84·64-s − 36·67-s − 4·71-s + 100·72-s − 48·74-s − 10·79-s + 5·81-s − 24·86-s + 200·88-s + ⋯
L(s)  = 1  − 2.82·2-s + 5·4-s − 7.07·8-s − 5/3·9-s − 3.01·11-s + 35/4·16-s + 4.71·18-s + 8.52·22-s − 3·25-s + 0.742·29-s − 9.89·32-s − 8.33·36-s + 1.97·37-s + 0.914·43-s − 15.0·44-s + 8.48·50-s − 5.21·53-s − 2.10·58-s + 21/2·64-s − 4.39·67-s − 0.474·71-s + 11.7·72-s − 5.57·74-s − 1.12·79-s + 5/9·81-s − 2.58·86-s + 21.3·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 7^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 7^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 7^{8} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(265219.\)
Root analytic conductor: \(4.76376\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{4} \cdot 7^{8} \cdot 29^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{4} \)
7 \( 1 \)
29$C_1$ \( ( 1 - T )^{4} \)
good3$C_2^2:C_4$ \( 1 + 5 T^{2} + 20 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
5$C_2^2 \wr C_2$ \( 1 + 3 p T^{2} + 102 T^{4} + 3 p^{3} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 5 T + 24 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2 \wr C_2$ \( 1 + 15 T^{2} + 30 p T^{4} + 15 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2 \wr C_2$ \( 1 + 22 T^{2} + 682 T^{4} + 22 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2 \wr C_2$ \( 1 - 16 T^{2} + 718 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2 \wr C_2$ \( 1 + 87 T^{2} + 3810 T^{4} + 87 p^{2} T^{6} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 - 6 T + 66 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2 \wr C_2$ \( 1 + 118 T^{2} + 6826 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 - 3 T + 50 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2 \wr C_2$ \( 1 + 183 T^{2} + 12786 T^{4} + 183 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 19 T + 192 T^{2} + 19 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2 \wr C_2$ \( 1 + 190 T^{2} + 15970 T^{4} + 190 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2 \wr C_2$ \( 1 + 224 T^{2} + 19918 T^{4} + 224 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 + 18 T + 198 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 + 2 T - 10 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2 \wr C_2$ \( 1 - 58 T^{2} + 874 T^{4} - 58 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 5 T + 58 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2 \wr C_2$ \( 1 + 206 T^{2} + 23010 T^{4} + 206 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2 \wr C_2$ \( 1 + 266 T^{2} + 32154 T^{4} + 266 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2 \wr C_2$ \( 1 + 150 T^{2} + 19530 T^{4} + 150 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52693788744558533786673309648, −6.36887193651266158540024653883, −6.21505931494885762205184734012, −6.19764330858997277098079741178, −5.99480339374861965606887238176, −5.67913894031928254313598443786, −5.54820202592595056797728821640, −5.37020872563565395947631442802, −5.29943555319643442347434210663, −4.63603661540254214533212858966, −4.59272988266234706167651728090, −4.56934616039206357546226241080, −4.21285481231937893915527427589, −3.67279581643659516633387211283, −3.38312255693820529430211035809, −3.34918860537743190165069392337, −2.96355715608654607249654119842, −2.67473567460688958214678111473, −2.67333890855701906596824097255, −2.50321110819973847478567922670, −2.26700050458092135828978076196, −1.76244192578826469777742681651, −1.67810418515543514214336499932, −1.20001819873064498535440663765, −1.06105388899107994111568830543, 0, 0, 0, 0, 1.06105388899107994111568830543, 1.20001819873064498535440663765, 1.67810418515543514214336499932, 1.76244192578826469777742681651, 2.26700050458092135828978076196, 2.50321110819973847478567922670, 2.67333890855701906596824097255, 2.67473567460688958214678111473, 2.96355715608654607249654119842, 3.34918860537743190165069392337, 3.38312255693820529430211035809, 3.67279581643659516633387211283, 4.21285481231937893915527427589, 4.56934616039206357546226241080, 4.59272988266234706167651728090, 4.63603661540254214533212858966, 5.29943555319643442347434210663, 5.37020872563565395947631442802, 5.54820202592595056797728821640, 5.67913894031928254313598443786, 5.99480339374861965606887238176, 6.19764330858997277098079741178, 6.21505931494885762205184734012, 6.36887193651266158540024653883, 6.52693788744558533786673309648

Graph of the $Z$-function along the critical line