Properties

Label 8-273e4-1.1-c2e4-0-2
Degree $8$
Conductor $5554571841$
Sign $1$
Analytic cond. $3061.89$
Root an. cond. $2.72740$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·9-s + 16·16-s − 74·19-s − 92·31-s − 52·37-s + 288·43-s − 23·49-s + 26·67-s + 194·73-s + 243·81-s + 338·97-s + 388·103-s + 286·109-s + 127-s + 131-s + 137-s + 139-s − 288·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 146·169-s + 1.33e3·171-s + 173-s + 179-s + ⋯
L(s)  = 1  − 2·9-s + 16-s − 3.89·19-s − 2.96·31-s − 1.40·37-s + 6.69·43-s − 0.469·49-s + 0.388·67-s + 2.65·73-s + 3·81-s + 3.48·97-s + 3.76·103-s + 2.62·109-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 2·144-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 0.863·169-s + 7.78·171-s + 0.00578·173-s + 0.00558·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(3061.89\)
Root analytic conductor: \(2.72740\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.295051673\)
\(L(\frac12)\) \(\approx\) \(1.295051673\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
7$C_2^2$ \( 1 + 23 T^{2} + p^{4} T^{4} \)
13$C_2^2$ \( 1 + 146 T^{2} + p^{4} T^{4} \)
good2$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
5$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
11$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + 37 T + p^{2} T^{2} )^{2}( 1 + 647 T^{2} + p^{4} T^{4} ) \)
23$C_2^2$ \( ( 1 - p^{2} T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
31$C_2$$\times$$C_2^2$ \( ( 1 + 46 T + p^{2} T^{2} )^{2}( 1 + 1559 T^{2} + p^{4} T^{4} ) \)
37$C_2$$\times$$C_2^2$ \( ( 1 + 26 T + p^{2} T^{2} )^{2}( 1 + 2591 T^{2} + p^{4} T^{4} ) \)
41$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
43$C_2$ \( ( 1 - 83 T + p^{2} T^{2} )^{2}( 1 - 61 T + p^{2} T^{2} )^{2} \)
47$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
53$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
59$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
61$C_2^2$ \( ( 1 + 7199 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 - 13 T + p^{2} T^{2} )^{2}( 1 - 8809 T^{2} + p^{4} T^{4} ) \)
71$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
73$C_2$$\times$$C_2^2$ \( ( 1 - 97 T + p^{2} T^{2} )^{2}( 1 + 9791 T^{2} + p^{4} T^{4} ) \)
79$C_2^2$$\times$$C_2^2$ \( ( 1 + 4679 T^{2} + p^{4} T^{4} )( 1 + 7682 T^{2} + p^{4} T^{4} ) \)
83$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
89$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
97$C_2$$\times$$C_2^2$ \( ( 1 - 169 T + p^{2} T^{2} )^{2}( 1 - 18814 T^{2} + p^{4} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.590758541139868620295391236597, −8.093988524218395430170956815315, −8.082414675709755986941713213733, −7.56206213963845820000127761003, −7.44969458387412084664979733566, −7.31271768781510054562833018129, −6.88550193787768701126586177261, −6.35262339612550828513491399091, −6.15421681951296309905485742810, −6.05826739248020409634868229290, −5.86321404568592789714052415958, −5.67712692164981874051161344381, −5.13123311286222380908763297055, −4.79508433501567307136306910180, −4.76051312819637682341185702830, −4.08330024187137647324822711500, −3.77526501619268962002413109655, −3.63597200008768203033815993529, −3.45473962938802689151429214612, −2.55889965211316899987296848087, −2.42060520801050371605608707649, −2.22864723252144908688851328285, −1.81242638848222915123695785705, −0.76891382835306899847042272858, −0.36751499509788284979556185683, 0.36751499509788284979556185683, 0.76891382835306899847042272858, 1.81242638848222915123695785705, 2.22864723252144908688851328285, 2.42060520801050371605608707649, 2.55889965211316899987296848087, 3.45473962938802689151429214612, 3.63597200008768203033815993529, 3.77526501619268962002413109655, 4.08330024187137647324822711500, 4.76051312819637682341185702830, 4.79508433501567307136306910180, 5.13123311286222380908763297055, 5.67712692164981874051161344381, 5.86321404568592789714052415958, 6.05826739248020409634868229290, 6.15421681951296309905485742810, 6.35262339612550828513491399091, 6.88550193787768701126586177261, 7.31271768781510054562833018129, 7.44969458387412084664979733566, 7.56206213963845820000127761003, 8.082414675709755986941713213733, 8.093988524218395430170956815315, 8.590758541139868620295391236597

Graph of the $Z$-function along the critical line