Properties

Label 8-2736e4-1.1-c1e4-0-3
Degree $8$
Conductor $5.604\times 10^{13}$
Sign $1$
Analytic cond. $227810.$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·17-s − 20·25-s + 22·49-s − 32·61-s − 44·73-s − 72·101-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 2.91·17-s − 4·25-s + 22/7·49-s − 4.09·61-s − 5.14·73-s − 7.16·101-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(227810.\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2116373121\)
\(L(\frac12)\) \(\approx\) \(0.2116373121\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
good5$C_2$ \( ( 1 + p T^{2} )^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 19 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 55 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 127 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 158 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.17541702756754149040449313787, −6.15337043931015113580391178321, −5.92220026795083853302418081219, −5.68914233421032960251144747281, −5.38082830552768655783380532580, −5.37689798950933125439467544931, −5.16814193085337075546575211458, −4.48900353831397548406002460133, −4.41556998186001713596199870720, −4.41263932494147596938089858846, −4.31972377085614825407596437555, −4.04113835189103264948777563754, −3.82872867498499349140443222270, −3.55785496832310287662216128186, −3.26361250636276239036894271178, −2.81357402960029076092782429603, −2.75032827747300981486839392581, −2.52369903286551647148753804440, −2.30924569151904736462449015136, −1.90502802454233838702577280717, −1.73132061787377782261939179435, −1.38183004231919183301121952735, −1.34370502052434864237941298728, −0.38230660133963674759771497658, −0.12157138042056293530031649410, 0.12157138042056293530031649410, 0.38230660133963674759771497658, 1.34370502052434864237941298728, 1.38183004231919183301121952735, 1.73132061787377782261939179435, 1.90502802454233838702577280717, 2.30924569151904736462449015136, 2.52369903286551647148753804440, 2.75032827747300981486839392581, 2.81357402960029076092782429603, 3.26361250636276239036894271178, 3.55785496832310287662216128186, 3.82872867498499349140443222270, 4.04113835189103264948777563754, 4.31972377085614825407596437555, 4.41263932494147596938089858846, 4.41556998186001713596199870720, 4.48900353831397548406002460133, 5.16814193085337075546575211458, 5.37689798950933125439467544931, 5.38082830552768655783380532580, 5.68914233421032960251144747281, 5.92220026795083853302418081219, 6.15337043931015113580391178321, 6.17541702756754149040449313787

Graph of the $Z$-function along the critical line