Properties

Label 8-2736e4-1.1-c1e4-0-15
Degree $8$
Conductor $5.604\times 10^{13}$
Sign $1$
Analytic cond. $227810.$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·43-s + 10·49-s + 44·73-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + ⋯
L(s)  = 1  + 0.609·43-s + 10/7·49-s + 5.14·73-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + 0.0644·241-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(227810.\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.635572314\)
\(L(\frac12)\) \(\approx\) \(5.635572314\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^3$ \( 1 + 31 T^{4} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 233 T^{4} + p^{4} T^{8} \)
13$C_2$ \( ( 1 - p T^{2} )^{4} \)
17$C_2^3$ \( 1 - 353 T^{4} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
47$C_2^3$ \( 1 + 1207 T^{4} + p^{4} T^{8} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 + 103 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^3$ \( 1 - 5678 T^{4} + p^{4} T^{8} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.14485985747862586596925871571, −6.07621264253540802194809574062, −5.95337220230444632964761875156, −5.56090063953097062876307504031, −5.37841888032954181211495018554, −5.28274439860845902907751134672, −5.09789217788922436378541192282, −4.79217652687978378483764597220, −4.71342193320230157002086677878, −4.18998983051658203156450581191, −4.15538560167687370138764961539, −4.07197661409489979236803001191, −3.66346243005887986051454324403, −3.55342644066711340530940741607, −3.30621121854168864509810343879, −2.96584264605352534332875052487, −2.69808551308676508423730719014, −2.55863393629116346040315352645, −2.28742458077828090506225728344, −1.92948198481441846682218511926, −1.69256223010572704638934595979, −1.54101947502222285047409440643, −0.854188338264071426979192051563, −0.61954714604075562841323873197, −0.54364179763579567930289646449, 0.54364179763579567930289646449, 0.61954714604075562841323873197, 0.854188338264071426979192051563, 1.54101947502222285047409440643, 1.69256223010572704638934595979, 1.92948198481441846682218511926, 2.28742458077828090506225728344, 2.55863393629116346040315352645, 2.69808551308676508423730719014, 2.96584264605352534332875052487, 3.30621121854168864509810343879, 3.55342644066711340530940741607, 3.66346243005887986051454324403, 4.07197661409489979236803001191, 4.15538560167687370138764961539, 4.18998983051658203156450581191, 4.71342193320230157002086677878, 4.79217652687978378483764597220, 5.09789217788922436378541192282, 5.28274439860845902907751134672, 5.37841888032954181211495018554, 5.56090063953097062876307504031, 5.95337220230444632964761875156, 6.07621264253540802194809574062, 6.14485985747862586596925871571

Graph of the $Z$-function along the critical line