L(s) = 1 | − 2·4-s + 3·16-s − 24·19-s + 9·25-s + 28·31-s − 10·49-s − 16·61-s − 4·64-s + 48·76-s − 18·100-s − 40·109-s − 6·121-s − 56·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 4-s + 3/4·16-s − 5.50·19-s + 9/5·25-s + 5.02·31-s − 1.42·49-s − 2.04·61-s − 1/2·64-s + 5.50·76-s − 9/5·100-s − 3.83·109-s − 0.545·121-s − 5.02·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7965127295\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7965127295\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 3 | | \( 1 \) |
| 5 | $C_2^2$ | \( 1 - 9 T^{2} + p^{2} T^{4} \) |
good | 7 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2}( 1 + 3 T + p T^{2} )^{2} \) |
| 11 | $C_2^2$ | \( ( 1 + 3 T^{2} + p^{2} T^{4} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - p T^{2} )^{4} \) |
| 17 | $C_2^2$ | \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \) |
| 19 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{4} \) |
| 23 | $C_2^2$ | \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + p T^{2} )^{4} \) |
| 31 | $C_2$ | \( ( 1 - 7 T + p T^{2} )^{4} \) |
| 37 | $C_2^2$ | \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \) |
| 41 | $C_2^2$ | \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \) |
| 43 | $C_2^2$ | \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) |
| 47 | $C_2^2$ | \( ( 1 - 90 T^{2} + p^{2} T^{4} )^{2} \) |
| 53 | $C_2^2$ | \( ( 1 - 97 T^{2} + p^{2} T^{4} )^{2} \) |
| 59 | $C_2^2$ | \( ( 1 + 42 T^{2} + p^{2} T^{4} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{4} \) |
| 67 | $C_2^2$ | \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{4} \) |
| 73 | $C_2^2$ | \( ( 1 - 127 T^{2} + p^{2} T^{4} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{4} \) |
| 83 | $C_2^2$ | \( ( 1 - 141 T^{2} + p^{2} T^{4} )^{2} \) |
| 89 | $C_2^2$ | \( ( 1 + 102 T^{2} + p^{2} T^{4} )^{2} \) |
| 97 | $C_2^2$ | \( ( 1 - 175 T^{2} + p^{2} T^{4} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.525631392692962727035906310322, −8.455040859108733109926187603313, −8.351675457227233897594458238514, −8.053229304902307451834733415791, −7.74882062897673679131828797956, −7.68264471490111978070905826614, −6.74297340677452860664192877079, −6.70548239590063049571171499498, −6.63369949335041670626880174907, −6.31807200379814711901959686957, −6.27720123821195438392519419345, −5.83624473813148852273036815983, −5.39705184573516012405240074521, −4.83113162903713253478382194672, −4.73120116441461174560227768954, −4.63088320330289034880030398323, −4.25958593489423691737548826188, −4.04094593557720861627866626263, −3.79686094233131321407077484596, −2.90956297276339527698007690151, −2.77550267018518104598069753251, −2.61509841044716268569206278134, −1.89475710595397661077940748203, −1.39479614281458716766363622217, −0.46931538822514545683082698665,
0.46931538822514545683082698665, 1.39479614281458716766363622217, 1.89475710595397661077940748203, 2.61509841044716268569206278134, 2.77550267018518104598069753251, 2.90956297276339527698007690151, 3.79686094233131321407077484596, 4.04094593557720861627866626263, 4.25958593489423691737548826188, 4.63088320330289034880030398323, 4.73120116441461174560227768954, 4.83113162903713253478382194672, 5.39705184573516012405240074521, 5.83624473813148852273036815983, 6.27720123821195438392519419345, 6.31807200379814711901959686957, 6.63369949335041670626880174907, 6.70548239590063049571171499498, 6.74297340677452860664192877079, 7.68264471490111978070905826614, 7.74882062897673679131828797956, 8.053229304902307451834733415791, 8.351675457227233897594458238514, 8.455040859108733109926187603313, 8.525631392692962727035906310322