Properties

Label 8-260e4-1.1-c5e4-0-0
Degree $8$
Conductor $4569760000$
Sign $1$
Analytic cond. $3.02367\times 10^{6}$
Root an. cond. $6.45753$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·3-s − 100·5-s + 126·7-s − 252·9-s + 594·11-s − 676·13-s − 1.20e3·15-s − 1.17e3·17-s + 3.36e3·19-s + 1.51e3·21-s + 776·23-s + 6.25e3·25-s − 1.25e3·27-s − 388·29-s + 186·31-s + 7.12e3·33-s − 1.26e4·35-s + 1.63e4·37-s − 8.11e3·39-s + 3.69e4·41-s + 3.98e4·43-s + 2.52e4·45-s + 8.23e3·47-s − 2.20e4·49-s − 1.41e4·51-s + 5.16e3·53-s − 5.94e4·55-s + ⋯
L(s)  = 1  + 0.769·3-s − 1.78·5-s + 0.971·7-s − 1.03·9-s + 1.48·11-s − 1.10·13-s − 1.37·15-s − 0.986·17-s + 2.13·19-s + 0.748·21-s + 0.305·23-s + 2·25-s − 0.330·27-s − 0.0856·29-s + 0.0347·31-s + 1.13·33-s − 1.73·35-s + 1.96·37-s − 0.854·39-s + 3.42·41-s + 3.28·43-s + 1.85·45-s + 0.543·47-s − 1.30·49-s − 0.759·51-s + 0.252·53-s − 2.64·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(3.02367\times 10^{6}\)
Root analytic conductor: \(6.45753\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(11.21672766\)
\(L(\frac12)\) \(\approx\) \(11.21672766\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + p^{2} T )^{4} \)
13$C_1$ \( ( 1 + p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 - 4 p T + 44 p^{2} T^{2} - 6524 T^{3} + 28706 p T^{4} - 6524 p^{5} T^{5} + 44 p^{12} T^{6} - 4 p^{16} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 18 p T + 37876 T^{2} - 6672182 T^{3} + 747432438 T^{4} - 6672182 p^{5} T^{5} + 37876 p^{10} T^{6} - 18 p^{16} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 54 p T + 402704 T^{2} - 189856714 T^{3} + 95818112334 T^{4} - 189856714 p^{5} T^{5} + 402704 p^{10} T^{6} - 54 p^{16} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 1176 T + 3706268 T^{2} + 2855232424 T^{3} + 6267103956102 T^{4} + 2855232424 p^{5} T^{5} + 3706268 p^{10} T^{6} + 1176 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 3366 T + 8009080 T^{2} - 15531544926 T^{3} + 29102354553918 T^{4} - 15531544926 p^{5} T^{5} + 8009080 p^{10} T^{6} - 3366 p^{15} T^{7} + p^{20} T^{8} \)
23$C_2 \wr S_4$ \( 1 - 776 T + 18449972 T^{2} - 2322877512 T^{3} + 149247204831942 T^{4} - 2322877512 p^{5} T^{5} + 18449972 p^{10} T^{6} - 776 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 388 T + 62039108 T^{2} + 42419223052 T^{3} + 1723978044150982 T^{4} + 42419223052 p^{5} T^{5} + 62039108 p^{10} T^{6} + 388 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 6 p T + 55486696 T^{2} - 51006762378 T^{3} + 1822783442150190 T^{4} - 51006762378 p^{5} T^{5} + 55486696 p^{10} T^{6} - 6 p^{16} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 16356 T + 260505508 T^{2} - 2687398372876 T^{3} + 24730278883480614 T^{4} - 2687398372876 p^{5} T^{5} + 260505508 p^{10} T^{6} - 16356 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 - 36908 T + 905064884 T^{2} - 351945382868 p T^{3} + 181594314203068598 T^{4} - 351945382868 p^{6} T^{5} + 905064884 p^{10} T^{6} - 36908 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 39872 T + 1069575316 T^{2} - 19291934346368 T^{3} + 270222362953219030 T^{4} - 19291934346368 p^{5} T^{5} + 1069575316 p^{10} T^{6} - 39872 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 8238 T + 636510308 T^{2} - 3987776881782 T^{3} + 193531895666410230 T^{4} - 3987776881782 p^{5} T^{5} + 636510308 p^{10} T^{6} - 8238 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 - 5160 T + 408792428 T^{2} - 6843902959352 T^{3} + 296337249430300566 T^{4} - 6843902959352 p^{5} T^{5} + 408792428 p^{10} T^{6} - 5160 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 71250 T + 3589325576 T^{2} - 130499021808298 T^{3} + 4031037855538003326 T^{4} - 130499021808298 p^{5} T^{5} + 3589325576 p^{10} T^{6} - 71250 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 21048 T + 1071342028 T^{2} + 40613922714472 T^{3} + 618569751411006582 T^{4} + 40613922714472 p^{5} T^{5} + 1071342028 p^{10} T^{6} + 21048 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 100582 T + 8087379460 T^{2} - 400515186233238 T^{3} + 17507065895397425862 T^{4} - 400515186233238 p^{5} T^{5} + 8087379460 p^{10} T^{6} - 100582 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 59170 T + 7589008568 T^{2} - 311385410928226 T^{3} + 20842996564043744494 T^{4} - 311385410928226 p^{5} T^{5} + 7589008568 p^{10} T^{6} - 59170 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 - 33496 T + 7208390044 T^{2} - 173557292965288 T^{3} + 21070825770152664166 T^{4} - 173557292965288 p^{5} T^{5} + 7208390044 p^{10} T^{6} - 33496 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 57564 T + 11057666092 T^{2} - 504154494797804 T^{3} + 49286603421867936102 T^{4} - 504154494797804 p^{5} T^{5} + 11057666092 p^{10} T^{6} - 57564 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 17234 T + 10853051948 T^{2} + 159139545537762 T^{3} + 59142926413415757558 T^{4} + 159139545537762 p^{5} T^{5} + 10853051948 p^{10} T^{6} + 17234 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 - 38928 T + 12804437036 T^{2} - 5414156287792 T^{3} + 71715044138720353926 T^{4} - 5414156287792 p^{5} T^{5} + 12804437036 p^{10} T^{6} - 38928 p^{15} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 210332 T + 49915949380 T^{2} - 5894299505918948 T^{3} + \)\(71\!\cdots\!90\)\( T^{4} - 5894299505918948 p^{5} T^{5} + 49915949380 p^{10} T^{6} - 210332 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953330388346687293574951812108, −7.46044317538438282810145817175, −7.38680537760548082349957695496, −7.30190165879759535821089984095, −7.06676146217220255663345070916, −6.48104259373502701663447715402, −6.18655545771862963193911040637, −6.02973264119003572518813170402, −5.80047799508673010173257938237, −5.06975122614588784136805546936, −5.02243750606011094222978850365, −4.89803348696863686148749575435, −4.38581113564101844129849191107, −4.17912322708229183377839053074, −3.80921457017420995641024491969, −3.63135292498952295699933060066, −3.38897384186579431746990434259, −2.73542789181256127837852669898, −2.57345361056118672979908608044, −2.38642166784814917360580085158, −2.06078475790838500437622382136, −1.20290360422919534214219401267, −0.70882111226664499908244933047, −0.70024535631227975038268524489, −0.67125446785154303613137656564, 0.67125446785154303613137656564, 0.70024535631227975038268524489, 0.70882111226664499908244933047, 1.20290360422919534214219401267, 2.06078475790838500437622382136, 2.38642166784814917360580085158, 2.57345361056118672979908608044, 2.73542789181256127837852669898, 3.38897384186579431746990434259, 3.63135292498952295699933060066, 3.80921457017420995641024491969, 4.17912322708229183377839053074, 4.38581113564101844129849191107, 4.89803348696863686148749575435, 5.02243750606011094222978850365, 5.06975122614588784136805546936, 5.80047799508673010173257938237, 6.02973264119003572518813170402, 6.18655545771862963193911040637, 6.48104259373502701663447715402, 7.06676146217220255663345070916, 7.30190165879759535821089984095, 7.38680537760548082349957695496, 7.46044317538438282810145817175, 7.953330388346687293574951812108

Graph of the $Z$-function along the critical line