Properties

Label 8-260e4-1.1-c2e4-0-3
Degree $8$
Conductor $4569760000$
Sign $1$
Analytic cond. $2519.03$
Root an. cond. $2.66166$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s + 5·4-s + 4·9-s − 40·12-s + 9·16-s − 88·23-s + 2·25-s + 200·27-s + 200·29-s + 20·36-s + 152·43-s − 72·48-s + 100·49-s + 200·61-s − 35·64-s + 704·69-s − 16·75-s − 790·81-s − 1.60e3·87-s − 440·92-s + 10·100-s − 88·101-s + 392·103-s − 808·107-s + 1.00e3·108-s + 1.00e3·116-s − 380·121-s + ⋯
L(s)  = 1  − 8/3·3-s + 5/4·4-s + 4/9·9-s − 3.33·12-s + 9/16·16-s − 3.82·23-s + 2/25·25-s + 7.40·27-s + 6.89·29-s + 5/9·36-s + 3.53·43-s − 3/2·48-s + 2.04·49-s + 3.27·61-s − 0.546·64-s + 10.2·69-s − 0.213·75-s − 9.75·81-s − 18.3·87-s − 4.78·92-s + 1/10·100-s − 0.871·101-s + 3.80·103-s − 7.55·107-s + 9.25·108-s + 8.62·116-s − 3.14·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(2519.03\)
Root analytic conductor: \(2.66166\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.8602777481\)
\(L(\frac12)\) \(\approx\) \(0.8602777481\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - 5 T^{2} + p^{4} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{4} T^{4} \)
13$C_2^2$ \( 1 + 22 p T^{2} + p^{4} T^{4} \)
good3$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{4} \)
7$C_2^2$ \( ( 1 - 50 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 190 T^{2} + p^{4} T^{4} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
19$C_2^2$ \( ( 1 + 670 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2$ \( ( 1 + 22 T + p^{2} T^{2} )^{4} \)
29$C_2$ \( ( 1 - 50 T + p^{2} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 626 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 2686 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 2594 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 38 T + p^{2} T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 3218 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 2 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 670 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 50 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 3170 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 8782 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 1870 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 9986 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 94 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 11806 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 18766 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.251397591281781460493180818068, −8.195445708602681169234623723345, −8.117693180172915269209987962240, −7.927621139818456336732735788935, −7.13378777733440119769788473865, −7.04046654083476843070978501448, −6.68241965366075778397661332162, −6.44984778137358505462576340964, −6.22495625800946684211645853332, −6.13262530901395824638212402287, −5.85596712064714944548500221569, −5.83546485576137689274030470959, −5.15838005216526800208584501286, −5.03977617029561532733162915150, −5.03421511841423492986400539067, −4.28349294228164863255068900727, −4.07291603638776239361131937319, −3.86768873748623462549984520448, −2.80728398016586938075468380932, −2.73704646093617345982198565550, −2.52559050964128914675671508840, −2.45332414520980113995666648242, −1.14990210814224420331520649950, −0.854582854444805411258489561890, −0.39734362206731051336079907847, 0.39734362206731051336079907847, 0.854582854444805411258489561890, 1.14990210814224420331520649950, 2.45332414520980113995666648242, 2.52559050964128914675671508840, 2.73704646093617345982198565550, 2.80728398016586938075468380932, 3.86768873748623462549984520448, 4.07291603638776239361131937319, 4.28349294228164863255068900727, 5.03421511841423492986400539067, 5.03977617029561532733162915150, 5.15838005216526800208584501286, 5.83546485576137689274030470959, 5.85596712064714944548500221569, 6.13262530901395824638212402287, 6.22495625800946684211645853332, 6.44984778137358505462576340964, 6.68241965366075778397661332162, 7.04046654083476843070978501448, 7.13378777733440119769788473865, 7.927621139818456336732735788935, 8.117693180172915269209987962240, 8.195445708602681169234623723345, 8.251397591281781460493180818068

Graph of the $Z$-function along the critical line