Properties

Label 8-260e4-1.1-c2e4-0-1
Degree $8$
Conductor $4569760000$
Sign $1$
Analytic cond. $2519.03$
Root an. cond. $2.66166$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 4·4-s − 6·5-s + 16·8-s + 24·10-s − 10·13-s − 64·16-s − 76·17-s − 24·20-s + 25·25-s + 40·26-s + 120·29-s + 64·32-s + 304·34-s + 72·37-s − 96·40-s − 178·41-s + 98·49-s − 100·50-s − 40·52-s + 34·53-s − 480·58-s − 120·61-s + 192·64-s + 60·65-s − 304·68-s + 192·73-s + ⋯
L(s)  = 1  − 2·2-s + 4-s − 6/5·5-s + 2·8-s + 12/5·10-s − 0.769·13-s − 4·16-s − 4.47·17-s − 6/5·20-s + 25-s + 1.53·26-s + 4.13·29-s + 2·32-s + 8.94·34-s + 1.94·37-s − 2.39·40-s − 4.34·41-s + 2·49-s − 2·50-s − 0.769·52-s + 0.641·53-s − 8.27·58-s − 1.96·61-s + 3·64-s + 0.923·65-s − 4.47·68-s + 2.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(2519.03\)
Root analytic conductor: \(2.66166\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.08618593437\)
\(L(\frac12)\) \(\approx\) \(0.08618593437\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p^{2} T^{2} )^{2} \)
5$C_2^2$ \( 1 + 6 T + 11 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
13$C_2^2$ \( 1 + 10 T - 69 T^{2} + 10 p^{2} T^{3} + p^{4} T^{4} \)
good3$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
7$C_2^2$ \( ( 1 - p^{2} T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + 30 T + p^{2} T^{2} )^{2}( 1 + 16 T - 33 T^{2} + 16 p^{2} T^{3} + p^{4} T^{4} ) \)
19$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
23$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
29$C_2$$\times$$C_2^2$ \( ( 1 - 40 T + p^{2} T^{2} )^{2}( 1 - 40 T + 759 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} ) \)
31$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
37$C_2$$\times$$C_2^2$ \( ( 1 - 24 T + p^{2} T^{2} )^{2}( 1 - 24 T - 793 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} ) \)
41$C_2$$\times$$C_2^2$ \( ( 1 + 80 T + p^{2} T^{2} )^{2}( 1 + 18 T - 1357 T^{2} + 18 p^{2} T^{3} + p^{4} T^{4} ) \)
43$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 90 T + 5291 T^{2} - 90 p^{2} T^{3} + p^{4} T^{4} )( 1 + 56 T + 327 T^{2} + 56 p^{2} T^{3} + p^{4} T^{4} ) \)
59$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
61$C_2$$\times$$C_2^2$ \( ( 1 + 120 T + p^{2} T^{2} )^{2}( 1 - 120 T + 10679 T^{2} - 120 p^{2} T^{3} + p^{4} T^{4} ) \)
67$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
71$C_2^3$ \( 1 - p^{4} T^{4} + p^{8} T^{8} \)
73$C_2^2$ \( ( 1 - 96 T + 3887 T^{2} - 96 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
89$C_2^2$$\times$$C_2^2$ \( ( 1 + 78 T - 1837 T^{2} + 78 p^{2} T^{3} + p^{4} T^{4} )( 1 + 160 T + 17679 T^{2} + 160 p^{2} T^{3} + p^{4} T^{4} ) \)
97$C_2^2$ \( ( 1 + 130 T + 7491 T^{2} + 130 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.592529626843195517641131097265, −8.491702525079208544694179075856, −8.206349488092296590559764707044, −7.82068060844654212620717265053, −7.59192386058305798865854122394, −7.23182815728851569937926556963, −6.99586726637072933478689802733, −6.92652967682239054255323867007, −6.44309579921524177154041997761, −6.36440983225109227526573197603, −6.21539960531143491588450793644, −5.30124349252112713690515285321, −4.90942177475011067998528868270, −4.73296068704726153130393633104, −4.60171437815323629614446035981, −4.56354293460122777118952007729, −3.91690800153975762157580556232, −3.85132536926433269700303775872, −3.13385628641558242796329744221, −2.64358951726579427849587917682, −2.17415845585678830826578341070, −2.15399442774853252009177636313, −1.24043682434048752513944659185, −0.73415444949603489408325205740, −0.16961060363249287244400209833, 0.16961060363249287244400209833, 0.73415444949603489408325205740, 1.24043682434048752513944659185, 2.15399442774853252009177636313, 2.17415845585678830826578341070, 2.64358951726579427849587917682, 3.13385628641558242796329744221, 3.85132536926433269700303775872, 3.91690800153975762157580556232, 4.56354293460122777118952007729, 4.60171437815323629614446035981, 4.73296068704726153130393633104, 4.90942177475011067998528868270, 5.30124349252112713690515285321, 6.21539960531143491588450793644, 6.36440983225109227526573197603, 6.44309579921524177154041997761, 6.92652967682239054255323867007, 6.99586726637072933478689802733, 7.23182815728851569937926556963, 7.59192386058305798865854122394, 7.82068060844654212620717265053, 8.206349488092296590559764707044, 8.491702525079208544694179075856, 8.592529626843195517641131097265

Graph of the $Z$-function along the critical line