Properties

Label 8-260e4-1.1-c1e4-0-6
Degree $8$
Conductor $4569760000$
Sign $1$
Analytic cond. $18.5781$
Root an. cond. $1.44087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 4·5-s + 4·8-s + 8·10-s − 4·13-s + 8·16-s + 18·17-s + 8·20-s + 5·25-s − 8·26-s − 30·29-s + 8·32-s + 36·34-s + 8·37-s + 16·40-s − 8·41-s + 10·50-s − 8·52-s − 18·53-s − 60·58-s + 12·61-s + 8·64-s − 16·65-s + 36·68-s + 22·73-s + 16·74-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.78·5-s + 1.41·8-s + 2.52·10-s − 1.10·13-s + 2·16-s + 4.36·17-s + 1.78·20-s + 25-s − 1.56·26-s − 5.57·29-s + 1.41·32-s + 6.17·34-s + 1.31·37-s + 2.52·40-s − 1.24·41-s + 1.41·50-s − 1.10·52-s − 2.47·53-s − 7.87·58-s + 1.53·61-s + 64-s − 1.98·65-s + 4.36·68-s + 2.57·73-s + 1.85·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(18.5781\)
Root analytic conductor: \(1.44087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.504299306\)
\(L(\frac12)\) \(\approx\) \(6.504299306\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 4 T + 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
good3$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
7$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$$\times$$C_2^2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
29$C_2$$\times$$C_2^2$ \( ( 1 + 10 T + p T^{2} )^{2}( 1 + 10 T + 71 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$$\times$$C_2^2$ \( ( 1 + 2 T + p T^{2} )^{2}( 1 - 12 T + 107 T^{2} - 12 p T^{3} + p^{2} T^{4} ) \)
41$C_2$$\times$$C_2^2$ \( ( 1 + 8 T + p T^{2} )^{2}( 1 - 8 T + 23 T^{2} - 8 p T^{3} + p^{2} T^{4} ) \)
43$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 + 4 T - 37 T^{2} + 4 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 143 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
59$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$$\times$$C_2^2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + 83 T^{2} + 12 p T^{3} + p^{2} T^{4} ) \)
67$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 16 T + 183 T^{2} - 16 p T^{3} + p^{2} T^{4} )( 1 - 6 T - 37 T^{2} - 6 p T^{3} + p^{2} T^{4} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
89$C_2^2$$\times$$C_2^2$ \( ( 1 - 10 T + 11 T^{2} - 10 p T^{3} + p^{2} T^{4} )( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \)
97$C_2^2$$\times$$C_2^2$ \( ( 1 + 8 T - 33 T^{2} + 8 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.074273705898291619234774719251, −8.104413872002194615228126487794, −8.043179881847796517470189879025, −7.891906948525138400754440484932, −7.76060342643501637808852111903, −7.43676414340324666503852406342, −7.16673655526534998506436151277, −6.75224499775027604822645345594, −6.73315773317909223756985344797, −5.86599321735576373734177041226, −5.77281979180818852304890823105, −5.75929501830852505795665290386, −5.67112232024223033877849778261, −5.16176124874150957673076551612, −5.01944362843254632731667796285, −4.86841036686274959895721625800, −4.14945183036791228076153411124, −3.86363283640761030422397635587, −3.54931253791625302788617244709, −3.27534518875654376006040080532, −3.13842831450876510636122087383, −2.18121682226130946216705889744, −2.11373433996424690343575959023, −1.64892373512171025844326425368, −1.18890830579121130575397829367, 1.18890830579121130575397829367, 1.64892373512171025844326425368, 2.11373433996424690343575959023, 2.18121682226130946216705889744, 3.13842831450876510636122087383, 3.27534518875654376006040080532, 3.54931253791625302788617244709, 3.86363283640761030422397635587, 4.14945183036791228076153411124, 4.86841036686274959895721625800, 5.01944362843254632731667796285, 5.16176124874150957673076551612, 5.67112232024223033877849778261, 5.75929501830852505795665290386, 5.77281979180818852304890823105, 5.86599321735576373734177041226, 6.73315773317909223756985344797, 6.75224499775027604822645345594, 7.16673655526534998506436151277, 7.43676414340324666503852406342, 7.76060342643501637808852111903, 7.891906948525138400754440484932, 8.043179881847796517470189879025, 8.104413872002194615228126487794, 9.074273705898291619234774719251

Graph of the $Z$-function along the critical line