Properties

Label 8-252e4-1.1-c1e4-0-0
Degree $8$
Conductor $4032758016$
Sign $1$
Analytic cond. $16.3949$
Root an. cond. $1.41853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·4-s − 6·5-s + 5·8-s − 6·10-s + 5·16-s − 24·17-s − 12·20-s + 11·25-s − 20·29-s + 10·32-s − 24·34-s − 30·40-s + 7·49-s + 11·50-s + 14·53-s − 20·58-s − 36·61-s + 17·64-s − 48·68-s − 24·73-s − 30·80-s + 144·85-s + 36·89-s + 7·98-s + 22·100-s + 24·101-s + ⋯
L(s)  = 1  + 0.707·2-s + 4-s − 2.68·5-s + 1.76·8-s − 1.89·10-s + 5/4·16-s − 5.82·17-s − 2.68·20-s + 11/5·25-s − 3.71·29-s + 1.76·32-s − 4.11·34-s − 4.74·40-s + 49-s + 1.55·50-s + 1.92·53-s − 2.62·58-s − 4.60·61-s + 17/8·64-s − 5.82·68-s − 2.80·73-s − 3.35·80-s + 15.6·85-s + 3.81·89-s + 0.707·98-s + 11/5·100-s + 2.38·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(16.3949\)
Root analytic conductor: \(1.41853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3191636122\)
\(L(\frac12)\) \(\approx\) \(0.3191636122\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T - T^{2} - p T^{3} + p^{2} T^{4} \)
3 \( 1 \)
7$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 15 T^{2} + 104 T^{4} + 15 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 12 T + 65 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 41 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 41 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
31$C_2^3$ \( 1 - 41 T^{2} + 720 T^{4} - 41 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 10 T^{2} - 2109 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 7 T - 4 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 71 T^{2} + 1560 T^{4} + 71 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 18 T + 169 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
73$C_2^2$ \( ( 1 + 12 T + 121 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 + 95 T^{2} + 2784 T^{4} + 95 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 + 145 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 18 T + 197 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 119 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.767822640030567965475869603707, −8.766920788941284831168553052464, −7.996339895083816699335545132849, −7.81473865434245165259396368970, −7.68383187160324922890331287662, −7.61005937844386687749653414619, −7.01382259083865975437757443296, −6.99821487854827112175172527102, −6.95774656473383070921967341300, −6.53963723115059543675804966223, −5.92912862406213373160656705118, −5.91083327771285487746022135395, −5.72277884919420742665908163744, −4.73585417859642499420512598767, −4.66344419076261624492788545550, −4.58612774939956256033318742322, −4.30251358564896830558275449404, −4.10474769712630771323683858379, −3.60773835850154606200124063080, −3.54969451825365226956347064858, −2.97472740750053989110719882266, −2.14874943459000897578375773083, −2.07212400141016427372685816478, −1.94630676757404214750977267972, −0.24107456398891390177635877369, 0.24107456398891390177635877369, 1.94630676757404214750977267972, 2.07212400141016427372685816478, 2.14874943459000897578375773083, 2.97472740750053989110719882266, 3.54969451825365226956347064858, 3.60773835850154606200124063080, 4.10474769712630771323683858379, 4.30251358564896830558275449404, 4.58612774939956256033318742322, 4.66344419076261624492788545550, 4.73585417859642499420512598767, 5.72277884919420742665908163744, 5.91083327771285487746022135395, 5.92912862406213373160656705118, 6.53963723115059543675804966223, 6.95774656473383070921967341300, 6.99821487854827112175172527102, 7.01382259083865975437757443296, 7.61005937844386687749653414619, 7.68383187160324922890331287662, 7.81473865434245165259396368970, 7.996339895083816699335545132849, 8.766920788941284831168553052464, 8.767822640030567965475869603707

Graph of the $Z$-function along the critical line