Properties

Label 8-24e8-1.1-c3e4-0-8
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $1.33399\times 10^{6}$
Root an. cond. $5.82967$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 500·25-s + 572·49-s + 4.76e3·73-s + 5.32e3·97-s + 5.32e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.01e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  + 4·25-s + 1.66·49-s + 7.63·73-s + 5.56·97-s + 4·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.460·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + 0.000292·227-s + 0.000288·229-s + 0.000281·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.33399\times 10^{6}\)
Root analytic conductor: \(5.82967\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(8.548819598\)
\(L(\frac12)\) \(\approx\) \(8.548819598\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
7$C_2^2$ \( ( 1 - 286 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
13$C_2$ \( ( 1 - 70 T + p^{3} T^{2} )^{2}( 1 + 70 T + p^{3} T^{2} )^{2} \)
17$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 10582 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
29$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 35282 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 110 T + p^{3} T^{2} )^{2}( 1 + 110 T + p^{3} T^{2} )^{2} \)
41$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 111386 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
53$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
59$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
61$C_2$ \( ( 1 - 182 T + p^{3} T^{2} )^{2}( 1 + 182 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( ( 1 + 172874 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
73$C_2$ \( ( 1 - 1190 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 204622 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
89$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
97$C_2$ \( ( 1 - 1330 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.20299662392624029509997116764, −6.96998242271999813662195366304, −6.70807045534843305589730795178, −6.65586898992746637698457271351, −6.63281908547253912362658800859, −6.05632386883156951524886598175, −5.76527379912107307897262210975, −5.72967424496039947151949618367, −5.27128099269900918543880838778, −4.87141050568116483246671147657, −4.85642264996169452708530555221, −4.76443069749800868349116880033, −4.43037369039784238661009507917, −3.95357947718611103681208369815, −3.44385088941095207008093196323, −3.41849416572924098496586837432, −3.41093966499436541116066998530, −2.81779764860771217270719786386, −2.30206922030250597574865332382, −2.24831316230899120951329007367, −2.07427991504094383689732004954, −1.27866218438550636600268532293, −0.871785814410549917259442415044, −0.794340645454267792128082113077, −0.49048782530309787635686146665, 0.49048782530309787635686146665, 0.794340645454267792128082113077, 0.871785814410549917259442415044, 1.27866218438550636600268532293, 2.07427991504094383689732004954, 2.24831316230899120951329007367, 2.30206922030250597574865332382, 2.81779764860771217270719786386, 3.41093966499436541116066998530, 3.41849416572924098496586837432, 3.44385088941095207008093196323, 3.95357947718611103681208369815, 4.43037369039784238661009507917, 4.76443069749800868349116880033, 4.85642264996169452708530555221, 4.87141050568116483246671147657, 5.27128099269900918543880838778, 5.72967424496039947151949618367, 5.76527379912107307897262210975, 6.05632386883156951524886598175, 6.63281908547253912362658800859, 6.65586898992746637698457271351, 6.70807045534843305589730795178, 6.96998242271999813662195366304, 7.20299662392624029509997116764

Graph of the $Z$-function along the critical line