Properties

Label 8-24e8-1.1-c3e4-0-3
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $1.33399\times 10^{6}$
Root an. cond. $5.82967$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 384·17-s + 116·25-s + 1.15e3·41-s − 1.34e3·49-s − 2.15e3·73-s − 5.37e3·89-s − 2.36e3·97-s + 768·113-s + 716·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 7.92e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 5.47·17-s + 0.927·25-s + 4.38·41-s − 3.93·49-s − 3.45·73-s − 6.40·89-s − 2.47·97-s + 0.639·113-s + 0.537·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 3.60·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1.33399\times 10^{6}\)
Root analytic conductor: \(5.82967\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(0.5554546771\)
\(L(\frac12)\) \(\approx\) \(0.5554546771\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 58 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 674 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 358 T^{2} + p^{6} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 3962 T^{2} + p^{6} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 96 T + p^{3} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 12118 T^{2} + p^{6} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 12046 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 48586 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 17810 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 12554 T^{2} + p^{6} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 288 T + p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 135910 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 99554 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 265306 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 180358 T^{2} + p^{6} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 116326 T^{2} + p^{6} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 117578 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 70610 T^{2} + p^{6} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 538 T + p^{3} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 30094 T^{2} + p^{6} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 956950 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 1344 T + p^{3} T^{2} )^{4} \)
97$C_2$ \( ( 1 + 590 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.09932203002597565994470164810, −7.02991556412982638618126072465, −6.93297668198878902858378799583, −6.57421767281394597707947129505, −6.45688701946566511894266438976, −6.11639578024126330290441820489, −5.87630813846473721930957690686, −5.76969852119645143867107601574, −5.26892789920994912137480514537, −5.09457672981485053473622289358, −4.57288351966548682677435643443, −4.33797200267635410905716941495, −4.33429475238747031501053304008, −4.26322150389409097728763187995, −4.10152816305759769137667084923, −3.20450728824967372718284750350, −2.95417428465133995472283705268, −2.94771208442251610340594274755, −2.35807579429580258950831657477, −2.29572692098964820748320495240, −1.92878372782111158257271379353, −1.38799773224146188372363016184, −1.26034651133895404860356668779, −0.38825598537951438965242996898, −0.17231599488565185040479764797, 0.17231599488565185040479764797, 0.38825598537951438965242996898, 1.26034651133895404860356668779, 1.38799773224146188372363016184, 1.92878372782111158257271379353, 2.29572692098964820748320495240, 2.35807579429580258950831657477, 2.94771208442251610340594274755, 2.95417428465133995472283705268, 3.20450728824967372718284750350, 4.10152816305759769137667084923, 4.26322150389409097728763187995, 4.33429475238747031501053304008, 4.33797200267635410905716941495, 4.57288351966548682677435643443, 5.09457672981485053473622289358, 5.26892789920994912137480514537, 5.76969852119645143867107601574, 5.87630813846473721930957690686, 6.11639578024126330290441820489, 6.45688701946566511894266438976, 6.57421767281394597707947129505, 6.93297668198878902858378799583, 7.02991556412982638618126072465, 7.09932203002597565994470164810

Graph of the $Z$-function along the critical line