Properties

Label 8-24e8-1.1-c2e4-0-3
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $60677.8$
Root an. cond. $3.96167$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 120·17-s + 76·25-s + 24·41-s − 4·49-s − 344·73-s − 312·89-s + 248·97-s + 24·113-s − 100·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 580·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 7.05·17-s + 3.03·25-s + 0.585·41-s − 0.0816·49-s − 4.71·73-s − 3.50·89-s + 2.55·97-s + 0.212·113-s − 0.826·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.43·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(60677.8\)
Root analytic conductor: \(3.96167\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2935283245\)
\(L(\frac12)\) \(\approx\) \(0.2935283245\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 38 T^{2} + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 50 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 290 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
19$C_2^2$ \( ( 1 + 674 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 914 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 1018 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1726 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 334 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 190 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2638 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 5318 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 3074 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 74 T + p^{2} T^{2} )^{2}( 1 + 74 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( ( 1 + 6626 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 6482 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 86 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 11038 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 13586 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 78 T + p^{2} T^{2} )^{4} \)
97$C_2$ \( ( 1 - 62 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38893709189746923848017209327, −7.30303014165155537767067964276, −6.86905918201796305504872498717, −6.86218345965042272201075070055, −6.60871020463681693573581388024, −6.35553075534168364422087835387, −6.24655490795604291462452845787, −5.96676204210569846680043446906, −5.58678463337727409717688986445, −5.07651414132702022736546687496, −5.03844751664607348139678014881, −4.53906099579572994552045647724, −4.52484715522237396919404583613, −4.31880862200366076178991506554, −4.24792991917049444724925928247, −3.81276735275334532379363049809, −3.25247017618835364966359363179, −2.86419562919665502986117135091, −2.69489393388727772336867656866, −2.33530356157797945870074939431, −2.27809206313197820495624340122, −1.62186718045250429957183128699, −1.47183051499872596619843961828, −0.61283480987577486908157251457, −0.12566935799982811304978515457, 0.12566935799982811304978515457, 0.61283480987577486908157251457, 1.47183051499872596619843961828, 1.62186718045250429957183128699, 2.27809206313197820495624340122, 2.33530356157797945870074939431, 2.69489393388727772336867656866, 2.86419562919665502986117135091, 3.25247017618835364966359363179, 3.81276735275334532379363049809, 4.24792991917049444724925928247, 4.31880862200366076178991506554, 4.52484715522237396919404583613, 4.53906099579572994552045647724, 5.03844751664607348139678014881, 5.07651414132702022736546687496, 5.58678463337727409717688986445, 5.96676204210569846680043446906, 6.24655490795604291462452845787, 6.35553075534168364422087835387, 6.60871020463681693573581388024, 6.86218345965042272201075070055, 6.86905918201796305504872498717, 7.30303014165155537767067964276, 7.38893709189746923848017209327

Graph of the $Z$-function along the critical line