Properties

Label 8-24e8-1.1-c1e4-0-3
Degree $8$
Conductor $110075314176$
Sign $1$
Analytic cond. $447.505$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·13-s + 16·25-s + 24·37-s − 4·49-s + 8·61-s − 32·97-s − 48·109-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 108·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4.43·13-s + 16/5·25-s + 3.94·37-s − 4/7·49-s + 1.02·61-s − 3.24·97-s − 4.59·109-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(447.505\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.314110566\)
\(L(\frac12)\) \(\approx\) \(1.314110566\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 88 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 142 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 134 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 160 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64447280433074367089497536340, −7.64006565909740857192430892332, −7.15114571207234710370819670074, −7.07012598023383490879371606100, −6.96603639246896978904741026584, −6.52109639569291087815479229536, −6.41109217734208565932017327079, −6.18668713965497884219095361266, −5.59283793293401047972675320564, −5.47682241251627425783245967948, −5.27264475672384624893226264143, −4.81626122090875509237041380955, −4.80126549567677412640917389036, −4.70885502241919532450136180327, −4.30200732071547033856468519348, −3.98491503100421461092184165467, −3.76218282389824909556386566466, −2.87620669905022926389970862274, −2.83355167419338710386771526045, −2.82630491320167199391182977328, −2.47865409445110051051012942284, −2.20165118443037188677233009361, −1.51386925148197022456047979947, −1.00139004576048210737172999504, −0.39560713202295222952378087818, 0.39560713202295222952378087818, 1.00139004576048210737172999504, 1.51386925148197022456047979947, 2.20165118443037188677233009361, 2.47865409445110051051012942284, 2.82630491320167199391182977328, 2.83355167419338710386771526045, 2.87620669905022926389970862274, 3.76218282389824909556386566466, 3.98491503100421461092184165467, 4.30200732071547033856468519348, 4.70885502241919532450136180327, 4.80126549567677412640917389036, 4.81626122090875509237041380955, 5.27264475672384624893226264143, 5.47682241251627425783245967948, 5.59283793293401047972675320564, 6.18668713965497884219095361266, 6.41109217734208565932017327079, 6.52109639569291087815479229536, 6.96603639246896978904741026584, 7.07012598023383490879371606100, 7.15114571207234710370819670074, 7.64006565909740857192430892332, 7.64447280433074367089497536340

Graph of the $Z$-function along the critical line