L(s) = 1 | − 16-s + 8·67-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
L(s) = 1 | − 16-s + 8·67-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.421686980\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.421686980\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.45342254332649190769180668322, −6.43433094806928459563688170687, −6.24645980435625160952427942308, −6.07559292753882842868518072876, −5.61462328686887477443063831466, −5.55420115214309402874914595729, −5.43560006535886436062470569220, −5.00542919460130982611186626472, −4.95445696055809479436942117576, −4.76431076193265845511270898639, −4.60894539258318054103948314037, −4.10785915539618027550561037447, −3.92104226276167143644047942918, −3.87443872781623881171309099983, −3.76389476188217843196402056899, −3.13538491372726399786320898136, −3.13336257552396451774035909162, −2.97839552388439962333696984792, −2.33974253115638221557235753819, −2.26494508970013943867371643918, −2.09267031624450672114732513965, −1.91442494301080118043109880529, −1.38493904020624041157621333140, −0.799591560594038470159497330029, −0.75754313721658315546386503779,
0.75754313721658315546386503779, 0.799591560594038470159497330029, 1.38493904020624041157621333140, 1.91442494301080118043109880529, 2.09267031624450672114732513965, 2.26494508970013943867371643918, 2.33974253115638221557235753819, 2.97839552388439962333696984792, 3.13336257552396451774035909162, 3.13538491372726399786320898136, 3.76389476188217843196402056899, 3.87443872781623881171309099983, 3.92104226276167143644047942918, 4.10785915539618027550561037447, 4.60894539258318054103948314037, 4.76431076193265845511270898639, 4.95445696055809479436942117576, 5.00542919460130982611186626472, 5.43560006535886436062470569220, 5.55420115214309402874914595729, 5.61462328686887477443063831466, 6.07559292753882842868518072876, 6.24645980435625160952427942308, 6.43433094806928459563688170687, 6.45342254332649190769180668322