Properties

Label 8-21e8-1.1-c2e4-0-5
Degree $8$
Conductor $37822859361$
Sign $1$
Analytic cond. $20849.4$
Root an. cond. $3.46646$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 31·16-s + 100·25-s + 472·67-s − 376·79-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 676·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯
L(s)  = 1  + 1.93·16-s + 4·25-s + 7.04·67-s − 4.75·79-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 4·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + 0.00436·229-s + 0.00429·233-s + 0.00418·239-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(20849.4\)
Root analytic conductor: \(3.46646\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 7^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(5.087886551\)
\(L(\frac12)\) \(\approx\) \(5.087886551\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^3$ \( 1 - 31 T^{4} + p^{8} T^{8} \)
5$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
11$C_2^3$ \( 1 + 13154 T^{4} + p^{8} T^{8} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
19$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
23$C_2^3$ \( 1 - 20926 T^{4} + p^{8} T^{8} \)
29$C_2^3$ \( 1 + 108194 T^{4} + p^{8} T^{8} \)
31$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 1294 T^{2} + p^{4} T^{4} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
43$C_2^2$ \( ( 1 - 334 T^{2} + p^{4} T^{4} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
53$C_2^3$ \( 1 + 15377762 T^{4} + p^{8} T^{8} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
61$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
67$C_2$ \( ( 1 - 118 T + p^{2} T^{2} )^{4} \)
71$C_2^3$ \( 1 - 42331966 T^{4} + p^{8} T^{8} \)
73$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
79$C_2$ \( ( 1 + 94 T + p^{2} T^{2} )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
97$C_2$ \( ( 1 + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.003944252388076585713706395782, −7.34484357844000603094225835802, −7.31295006968999471336670458395, −7.22414776673903406937883473020, −6.85049048296795638352469357091, −6.50899771410017511441005169654, −6.42056020263908503206615913201, −6.24213879568305153801652452519, −5.58698837803442510493199481942, −5.46487294312487517944115790203, −5.41316530385840940821326954025, −5.10349970528977500543787614867, −4.64753790031943309049772262783, −4.58119102412530810773705228657, −4.21201052180148476039599559198, −3.55590010196291404764597417759, −3.51030978065107433251883762522, −3.49132120550857144461517843900, −2.73736433048456785176849153308, −2.61127303002118510743491507864, −2.42359536848106437374970040032, −1.61019979669780788098947463478, −1.24798259193288568195847346081, −0.953014486359922214401953137910, −0.52247547110369602177750599477, 0.52247547110369602177750599477, 0.953014486359922214401953137910, 1.24798259193288568195847346081, 1.61019979669780788098947463478, 2.42359536848106437374970040032, 2.61127303002118510743491507864, 2.73736433048456785176849153308, 3.49132120550857144461517843900, 3.51030978065107433251883762522, 3.55590010196291404764597417759, 4.21201052180148476039599559198, 4.58119102412530810773705228657, 4.64753790031943309049772262783, 5.10349970528977500543787614867, 5.41316530385840940821326954025, 5.46487294312487517944115790203, 5.58698837803442510493199481942, 6.24213879568305153801652452519, 6.42056020263908503206615913201, 6.50899771410017511441005169654, 6.85049048296795638352469357091, 7.22414776673903406937883473020, 7.31295006968999471336670458395, 7.34484357844000603094225835802, 8.003944252388076585713706395782

Graph of the $Z$-function along the critical line