Properties

Label 8-21e8-1.1-c2e4-0-4
Degree $8$
Conductor $37822859361$
Sign $1$
Analytic cond. $20849.4$
Root an. cond. $3.46646$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·4-s + 43·16-s + 22·25-s + 32·37-s − 16·43-s + 20·64-s + 416·67-s + 44·79-s + 220·100-s − 544·109-s − 458·121-s + 127-s + 131-s + 137-s + 139-s + 320·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 460·169-s − 160·172-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 5/2·4-s + 2.68·16-s + 0.879·25-s + 0.864·37-s − 0.372·43-s + 5/16·64-s + 6.20·67-s + 0.556·79-s + 11/5·100-s − 4.99·109-s − 3.78·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 2.16·148-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 2.72·169-s − 0.930·172-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(20849.4\)
Root analytic conductor: \(3.46646\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 7^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(7.981189536\)
\(L(\frac12)\) \(\approx\) \(7.981189536\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( ( 1 - 5 T^{2} + p^{4} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 11 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 229 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 230 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 46 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 530 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 1006 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 1045 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 1055 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 1958 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 4262 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 1259 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 371 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 5990 T^{2} + p^{4} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 104 T + p^{2} T^{2} )^{4} \)
71$C_2^2$ \( ( 1 + 1294 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 8306 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 11 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 3421 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 3034 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 17495 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83107830490850512224951325027, −7.74862301679821688847674139461, −7.17374314870177987214517735467, −6.81167392232529196459848282834, −6.79520819380049887146932810162, −6.63451545672068266481773517940, −6.62487972068021594723531341346, −6.32555600423583309055954377097, −5.77480062922273107269941084896, −5.57224531861615805863368128323, −5.37682481761931528355768967985, −5.15739016861448300759667820788, −4.88611763785054736502510221530, −4.16458182831732667743344377756, −4.08638030768795206436123964925, −4.05408299348812360341818975251, −3.17518143686522664558468157001, −3.14486029641606332509999239047, −2.97757186779295188046402655450, −2.33366727015342681627704287155, −2.17223857071201286041439031901, −2.10336457900320394978157455779, −1.41766070350080452261424857013, −1.06557036327455814855661028119, −0.50299448767447714565171089025, 0.50299448767447714565171089025, 1.06557036327455814855661028119, 1.41766070350080452261424857013, 2.10336457900320394978157455779, 2.17223857071201286041439031901, 2.33366727015342681627704287155, 2.97757186779295188046402655450, 3.14486029641606332509999239047, 3.17518143686522664558468157001, 4.05408299348812360341818975251, 4.08638030768795206436123964925, 4.16458182831732667743344377756, 4.88611763785054736502510221530, 5.15739016861448300759667820788, 5.37682481761931528355768967985, 5.57224531861615805863368128323, 5.77480062922273107269941084896, 6.32555600423583309055954377097, 6.62487972068021594723531341346, 6.63451545672068266481773517940, 6.79520819380049887146932810162, 6.81167392232529196459848282834, 7.17374314870177987214517735467, 7.74862301679821688847674139461, 7.83107830490850512224951325027

Graph of the $Z$-function along the critical line