Properties

Label 8-21e8-1.1-c2e4-0-3
Degree $8$
Conductor $37822859361$
Sign $1$
Analytic cond. $20849.4$
Root an. cond. $3.46646$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 16·16-s − 50·25-s − 76·37-s − 232·43-s + 47·64-s + 236·67-s + 188·79-s − 50·100-s + 212·109-s − 206·121-s + 127-s + 131-s + 137-s + 139-s − 76·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 676·169-s − 232·172-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 1/4·4-s + 16-s − 2·25-s − 2.05·37-s − 5.39·43-s + 0.734·64-s + 3.52·67-s + 2.37·79-s − 1/2·100-s + 1.94·109-s − 1.70·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 0.513·148-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 4·169-s − 1.34·172-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(20849.4\)
Root analytic conductor: \(3.46646\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 7^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.269250123\)
\(L(\frac12)\) \(\approx\) \(2.269250123\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^3$ \( 1 - T^{2} - 15 T^{4} - p^{4} T^{6} + p^{8} T^{8} \)
5$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
11$C_2^3$ \( 1 + 206 T^{2} + 27795 T^{4} + 206 p^{4} T^{6} + p^{8} T^{8} \)
13$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
17$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
23$C_2^3$ \( 1 + 734 T^{2} + 258915 T^{4} + 734 p^{4} T^{6} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 + 1234 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( ( 1 + 38 T + 75 T^{2} + 38 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
43$C_2$ \( ( 1 + 58 T + p^{2} T^{2} )^{4} \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
53$C_2^3$ \( 1 + 5582 T^{2} + 23268243 T^{4} + 5582 p^{4} T^{6} + p^{8} T^{8} \)
59$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 118 T + 9435 T^{2} - 118 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 2914 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 94 T + 2595 T^{2} - 94 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
89$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2}( 1 + p T + p^{2} T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.015951762243454572759871615146, −7.66739127771355078333662029884, −7.34758407639092734836276284482, −6.95600389503612017138057559358, −6.75345456614683950384569944341, −6.61989234596792268078699810932, −6.52071123271210110278614824388, −6.13916784173033926181912764516, −5.70953176912478281101878264568, −5.45075012683790756626766985531, −5.37274017123747871648680192085, −4.96762005255159533924116055482, −4.95481608732772090725236387253, −4.49090188408965088973457271170, −3.98047196954975433734718693878, −3.67714383981345678608745891938, −3.65355677724699831252209863324, −3.25891549352790073616987521593, −3.07540317483051559883104221787, −2.50478270095404445312009561233, −1.90266493672753517797654689876, −1.80808869549421209016989844524, −1.68825100429735420124709611504, −0.76674291266331167511519419060, −0.34821576803977595239447722160, 0.34821576803977595239447722160, 0.76674291266331167511519419060, 1.68825100429735420124709611504, 1.80808869549421209016989844524, 1.90266493672753517797654689876, 2.50478270095404445312009561233, 3.07540317483051559883104221787, 3.25891549352790073616987521593, 3.65355677724699831252209863324, 3.67714383981345678608745891938, 3.98047196954975433734718693878, 4.49090188408965088973457271170, 4.95481608732772090725236387253, 4.96762005255159533924116055482, 5.37274017123747871648680192085, 5.45075012683790756626766985531, 5.70953176912478281101878264568, 6.13916784173033926181912764516, 6.52071123271210110278614824388, 6.61989234596792268078699810932, 6.75345456614683950384569944341, 6.95600389503612017138057559358, 7.34758407639092734836276284482, 7.66739127771355078333662029884, 8.015951762243454572759871615146

Graph of the $Z$-function along the critical line