Properties

Label 8-2175e4-1.1-c0e4-0-0
Degree $8$
Conductor $2.238\times 10^{13}$
Sign $1$
Analytic cond. $1.38824$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·16-s − 4·49-s − 81-s − 8·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  − 2·16-s − 4·49-s − 81-s − 8·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 29^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 29^{4}\)
Sign: $1$
Analytic conductor: \(1.38824\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 29^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5137390383\)
\(L(\frac12)\) \(\approx\) \(0.5137390383\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + T^{4} \)
5 \( 1 \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 + T^{4} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
67$C_2$ \( ( 1 + T^{2} )^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + T^{4} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.71032443837427956329442847953, −6.69436151736711633518903983827, −6.26222535343257359988756493995, −5.91704177012419885978283356177, −5.90567529884247538508891719902, −5.68376103870545192860691440655, −5.19891902844400130386375685940, −5.12524807159713461958350129817, −5.08215947008945072946602121854, −4.73682795611349426892386075174, −4.53279872115235031684175581565, −4.20865028647409363998692113396, −4.15364416745678358955646277686, −3.97060540279298605551049685533, −3.54128174111645860228937893763, −3.34302047631195795110182512882, −3.12826316079474454733365428903, −2.72157005976622050768543625316, −2.59021122765571353649079088826, −2.48864770213640067956031190971, −1.97754050937281310951466859758, −1.67862085979285519302565276236, −1.47067445861492531573189272021, −1.22802583446277363449727970081, −0.33228161875003712152339817706, 0.33228161875003712152339817706, 1.22802583446277363449727970081, 1.47067445861492531573189272021, 1.67862085979285519302565276236, 1.97754050937281310951466859758, 2.48864770213640067956031190971, 2.59021122765571353649079088826, 2.72157005976622050768543625316, 3.12826316079474454733365428903, 3.34302047631195795110182512882, 3.54128174111645860228937893763, 3.97060540279298605551049685533, 4.15364416745678358955646277686, 4.20865028647409363998692113396, 4.53279872115235031684175581565, 4.73682795611349426892386075174, 5.08215947008945072946602121854, 5.12524807159713461958350129817, 5.19891902844400130386375685940, 5.68376103870545192860691440655, 5.90567529884247538508891719902, 5.91704177012419885978283356177, 6.26222535343257359988756493995, 6.69436151736711633518903983827, 6.71032443837427956329442847953

Graph of the $Z$-function along the critical line