L(s) = 1 | − 2·5-s + 4·11-s + 24·19-s + 5·25-s − 18·29-s − 4·31-s − 22·41-s − 13·49-s − 8·55-s − 8·59-s + 14·61-s − 24·71-s + 24·79-s + 4·89-s − 48·95-s + 4·101-s − 28·109-s + 26·121-s − 22·125-s + 127-s + 131-s + 137-s + 139-s + 36·145-s + 149-s + 151-s + 8·155-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.20·11-s + 5.50·19-s + 25-s − 3.34·29-s − 0.718·31-s − 3.43·41-s − 1.85·49-s − 1.07·55-s − 1.04·59-s + 1.79·61-s − 2.84·71-s + 2.70·79-s + 0.423·89-s − 4.92·95-s + 0.398·101-s − 2.68·109-s + 2.36·121-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.98·145-s + 0.0819·149-s + 0.0813·151-s + 0.642·155-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.220270998 |
L(21) |
≈ |
1.220270998 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C22 | 1+2T−T2+2pT3+p2T4 |
good | 7 | C22×C22 | (1+2T2+p2T4)(1+11T2+p2T4) |
| 11 | C22 | (1−2T−7T2−2pT3+p2T4)2 |
| 13 | C22×C22 | (1−4T+3T2−4pT3+p2T4)(1+4T+3T2+4pT3+p2T4) |
| 17 | C2 | (1−8T+pT2)2(1+8T+pT2)2 |
| 19 | C2 | (1−6T+pT2)4 |
| 23 | C23 | 1+45T2+1496T4+45p2T6+p4T8 |
| 29 | C22 | (1+9T+52T2+9pT3+p2T4)2 |
| 31 | C22 | (1+2T−27T2+2pT3+p2T4)2 |
| 37 | C2 | (1−12T+pT2)2(1+12T+pT2)2 |
| 41 | C22 | (1+11T+80T2+11pT3+p2T4)2 |
| 43 | C23 | 1+70T2+3051T4+70p2T6+p4T8 |
| 47 | C23 | 1+45T2−184T4+45p2T6+p4T8 |
| 53 | C2 | (1−pT2)4 |
| 59 | C22 | (1+4T−43T2+4pT3+p2T4)2 |
| 61 | C22 | (1−7T−12T2−7pT3+p2T4)2 |
| 67 | C22×C22 | (1−109T2+p2T4)(1+122T2+p2T4) |
| 71 | C2 | (1+6T+pT2)4 |
| 73 | C22 | (1−130T2+p2T4)2 |
| 79 | C22 | (1−12T+65T2−12pT3+p2T4)2 |
| 83 | C23 | 1+45T2−4864T4+45p2T6+p4T8 |
| 89 | C2 | (1−T+pT2)4 |
| 97 | C22×C22 | (1−18T+227T2−18pT3+p2T4)(1+18T+227T2+18pT3+p2T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.39191507468739030506084472433, −6.27898335818023946931470861574, −6.12250079706366030990318680996, −5.69356978117290734652475038992, −5.49056207877972084821920575548, −5.32702715448864598836607043906, −5.14358854560301000579086809992, −5.11476058560992802893040548421, −4.91160904727196451621835533681, −4.62239881318503279232934133152, −4.22492702646077614777953787587, −3.81961568536593486504635124916, −3.78681684856558431867977461428, −3.58862377387793495029572050168, −3.41854288121771279328849632459, −3.26847093108326051353512080636, −3.05142900184238625552501790323, −2.72345703385076259328850703366, −2.43713061753857832029261631720, −1.77013564907901542014251415948, −1.71475368722205038123219230891, −1.35567415451628739427814281445, −1.28178769109159176735238708802, −0.790075092392969020898574693832, −0.20095382087468369658917649633,
0.20095382087468369658917649633, 0.790075092392969020898574693832, 1.28178769109159176735238708802, 1.35567415451628739427814281445, 1.71475368722205038123219230891, 1.77013564907901542014251415948, 2.43713061753857832029261631720, 2.72345703385076259328850703366, 3.05142900184238625552501790323, 3.26847093108326051353512080636, 3.41854288121771279328849632459, 3.58862377387793495029572050168, 3.78681684856558431867977461428, 3.81961568536593486504635124916, 4.22492702646077614777953787587, 4.62239881318503279232934133152, 4.91160904727196451621835533681, 5.11476058560992802893040548421, 5.14358854560301000579086809992, 5.32702715448864598836607043906, 5.49056207877972084821920575548, 5.69356978117290734652475038992, 6.12250079706366030990318680996, 6.27898335818023946931470861574, 6.39191507468739030506084472433