L(s) = 1 | + 16·13-s − 2·25-s + 8·37-s + 28·49-s + 44·61-s + 40·73-s + 64·97-s + 4·109-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 108·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 4.43·13-s − 2/5·25-s + 1.31·37-s + 4·49-s + 5.63·61-s + 4.68·73-s + 6.49·97-s + 0.383·109-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅312⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅312⋅54
|
Sign: |
1
|
Analytic conductor: |
88495.9 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅312⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
10.29826845 |
L(21) |
≈ |
10.29826845 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T2)2 |
good | 7 | C2 | (1−pT2)4 |
| 11 | C22 | (1+10T2+p2T4)2 |
| 13 | C2 | (1−4T+pT2)4 |
| 17 | C22 | (1−25T2+p2T4)2 |
| 19 | C2 | (1−7T+pT2)2(1+7T+pT2)2 |
| 23 | C22 | (1+43T2+p2T4)2 |
| 29 | C2 | (1−pT2)4 |
| 31 | C2 | (1−11T+pT2)2(1+11T+pT2)2 |
| 37 | C2 | (1−2T+pT2)4 |
| 41 | C22 | (1−46T2+p2T4)2 |
| 43 | C22 | (1−74T2+p2T4)2 |
| 47 | C22 | (1+82T2+p2T4)2 |
| 53 | C22 | (1−97T2+p2T4)2 |
| 59 | C22 | (1+70T2+p2T4)2 |
| 61 | C2 | (1−11T+pT2)4 |
| 67 | C2 | (1−16T+pT2)2(1+16T+pT2)2 |
| 71 | C22 | (1+130T2+p2T4)2 |
| 73 | C2 | (1−10T+pT2)4 |
| 79 | C2 | (1−13T+pT2)2(1+13T+pT2)2 |
| 83 | C22 | (1+139T2+p2T4)2 |
| 89 | C22 | (1+146T2+p2T4)2 |
| 97 | C2 | (1−16T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.46475564136412098674118331359, −6.11472519359885869200352135259, −6.06250451855410475564519498036, −5.84956113770167196143365289265, −5.81181949498335120766894350145, −5.30512928718617604262627456682, −5.26143362617949643855069495526, −5.09362433305188909596161715492, −4.91019850318182765546988005680, −4.19466329616951735462025244542, −4.11888334293400507511717988645, −4.08616806344695161465742946602, −3.98556232353403183463140996509, −3.55019434004427301762737108254, −3.44357412037090026222253216604, −3.31611044809946375424304163356, −3.05289261089256111662310783569, −2.29055264224896745237293799100, −2.25045616571239268310439312535, −2.21652973268923967098211629542, −1.94329112336789245849960624355, −1.08967268402571049946421798937, −1.05433488004310442440802175617, −0.879090882508719592218855567074, −0.68750312518704842498304116880,
0.68750312518704842498304116880, 0.879090882508719592218855567074, 1.05433488004310442440802175617, 1.08967268402571049946421798937, 1.94329112336789245849960624355, 2.21652973268923967098211629542, 2.25045616571239268310439312535, 2.29055264224896745237293799100, 3.05289261089256111662310783569, 3.31611044809946375424304163356, 3.44357412037090026222253216604, 3.55019434004427301762737108254, 3.98556232353403183463140996509, 4.08616806344695161465742946602, 4.11888334293400507511717988645, 4.19466329616951735462025244542, 4.91019850318182765546988005680, 5.09362433305188909596161715492, 5.26143362617949643855069495526, 5.30512928718617604262627456682, 5.81181949498335120766894350145, 5.84956113770167196143365289265, 6.06250451855410475564519498036, 6.11472519359885869200352135259, 6.46475564136412098674118331359