Properties

Label 8-2016e4-1.1-c2e4-0-6
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $9.10546\times 10^{6}$
Root an. cond. $7.41161$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 56·13-s + 84·25-s − 240·37-s + 14·49-s + 40·61-s + 168·73-s − 504·97-s + 232·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.28e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 4.30·13-s + 3.35·25-s − 6.48·37-s + 2/7·49-s + 0.655·61-s + 2.30·73-s − 5.19·97-s + 1.91·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 7.59·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(9.10546\times 10^{6}\)
Root analytic conductor: \(7.41161\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(6.306172207\)
\(L(\frac12)\) \(\approx\) \(6.306172207\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 42 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 116 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 546 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 274 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 932 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1232 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 914 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 60 T + p^{2} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 3290 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 3250 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 1674 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 1568 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 2426 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 4246 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 2676 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 4390 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 5714 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 14490 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 126 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.35716577250080086377097017869, −6.23656620505701017135398745598, −5.72384130122422520455390727884, −5.62220650021584548563078901357, −5.58221319353650946829210680075, −5.27943857388504488591743725928, −5.04372008737311590851597259409, −5.04203533927824156488103526507, −4.48566996308456896526411324341, −4.33353829815907852181285133246, −4.17990122999406174506943009693, −3.71272992641844800596915943840, −3.61784702470571300595214299146, −3.44435697962155966640054443962, −3.27161248451363389328863489820, −3.22213322285868767786353328516, −2.72497704272433966989997059171, −2.50365708088043162814891096950, −1.89752806920385654684836710101, −1.85796536741045534152926233297, −1.39008708916359184127455444556, −1.35450073549116109720946224178, −1.06199693249631494504189405223, −0.65872557759073809367234778678, −0.29712121738179478302216977119, 0.29712121738179478302216977119, 0.65872557759073809367234778678, 1.06199693249631494504189405223, 1.35450073549116109720946224178, 1.39008708916359184127455444556, 1.85796536741045534152926233297, 1.89752806920385654684836710101, 2.50365708088043162814891096950, 2.72497704272433966989997059171, 3.22213322285868767786353328516, 3.27161248451363389328863489820, 3.44435697962155966640054443962, 3.61784702470571300595214299146, 3.71272992641844800596915943840, 4.17990122999406174506943009693, 4.33353829815907852181285133246, 4.48566996308456896526411324341, 5.04203533927824156488103526507, 5.04372008737311590851597259409, 5.27943857388504488591743725928, 5.58221319353650946829210680075, 5.62220650021584548563078901357, 5.72384130122422520455390727884, 6.23656620505701017135398745598, 6.35716577250080086377097017869

Graph of the $Z$-function along the critical line