Properties

Label 8-2016e4-1.1-c2e4-0-1
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $9.10546\times 10^{6}$
Root an. cond. $7.41161$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 40·13-s + 100·25-s + 112·37-s + 14·49-s − 200·61-s − 456·73-s + 184·97-s + 256·109-s + 456·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 324·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 3.07·13-s + 4·25-s + 3.02·37-s + 2/7·49-s − 3.27·61-s − 6.24·73-s + 1.89·97-s + 2.34·109-s + 3.76·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 1.91·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(9.10546\times 10^{6}\)
Root analytic conductor: \(7.41161\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.569850406\)
\(L(\frac12)\) \(\approx\) \(1.569850406\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good5$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
11$C_2^2$ \( ( 1 - 228 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 186 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 286 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 1044 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 130 T^{2} + p^{4} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 28 T + p^{2} T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 1314 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 3470 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 3018 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 1344 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 2502 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 50 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 7606 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 124 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 114 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 12454 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 13554 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 13250 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 46 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.33855858696545396097253433720, −6.03662696897819909329504696146, −5.92175161228006082547509822643, −5.86182841325231833728686845168, −5.35890148288060029794478835583, −5.20404614194693041518612660200, −4.87766946059034745275281582473, −4.79895261639775032583830757121, −4.60029122322915385857833205127, −4.41864002147764700268173092761, −4.37573139899742121034736054121, −4.20257280505552479688823625855, −3.45543621373733709989556834531, −3.36191013145332610194089438698, −2.99690123243621535651676583395, −2.91480551381234311820466541451, −2.83125112993786993690535569792, −2.48939873324373921311073404971, −2.21796857416815817364395056026, −1.98313755378496668426674008330, −1.45586370595338742876491578358, −1.29187424799546897563167786285, −0.869291315711907992906353206997, −0.58782868034476045880787952918, −0.17940287602207278739669593241, 0.17940287602207278739669593241, 0.58782868034476045880787952918, 0.869291315711907992906353206997, 1.29187424799546897563167786285, 1.45586370595338742876491578358, 1.98313755378496668426674008330, 2.21796857416815817364395056026, 2.48939873324373921311073404971, 2.83125112993786993690535569792, 2.91480551381234311820466541451, 2.99690123243621535651676583395, 3.36191013145332610194089438698, 3.45543621373733709989556834531, 4.20257280505552479688823625855, 4.37573139899742121034736054121, 4.41864002147764700268173092761, 4.60029122322915385857833205127, 4.79895261639775032583830757121, 4.87766946059034745275281582473, 5.20404614194693041518612660200, 5.35890148288060029794478835583, 5.86182841325231833728686845168, 5.92175161228006082547509822643, 6.03662696897819909329504696146, 6.33855858696545396097253433720

Graph of the $Z$-function along the critical line