Properties

Label 8-2016e4-1.1-c1e4-0-17
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $67153.7$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24·13-s + 4·25-s + 32·37-s − 2·49-s + 8·61-s + 8·73-s − 24·97-s + 16·109-s − 40·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 308·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 6.65·13-s + 4/5·25-s + 5.26·37-s − 2/7·49-s + 1.02·61-s + 0.936·73-s − 2.43·97-s + 1.53·109-s − 3.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 23.6·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(67153.7\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.74064442\)
\(L(\frac12)\) \(\approx\) \(11.74064442\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 104 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.44061218308063451695588553613, −6.31009291638790608640779471824, −6.18444985092489853450887768189, −5.88712477898299920694646294413, −5.68506348261791168936360425480, −5.60541958274214311231796109574, −5.46164432859158609941928595229, −5.07077920023534064166516045123, −4.74583591199790861561420840714, −4.23133469647246136472888468125, −4.21013493065346535161220347645, −4.13559315672981738264155927278, −4.08696020160856823636743040497, −3.62456374164899762468618868548, −3.41191508142841726603185793721, −3.20985189463747322517125435449, −3.08563849860196136170921276318, −2.63647230669998500667089564230, −2.49392343193830673172627218675, −1.96641932298947941329521041450, −1.63789403645100692738610325000, −1.32360169918675921311023180693, −1.10941636903021293827344834732, −0.796277695346660624491462692128, −0.78316264427135727292073719821, 0.78316264427135727292073719821, 0.796277695346660624491462692128, 1.10941636903021293827344834732, 1.32360169918675921311023180693, 1.63789403645100692738610325000, 1.96641932298947941329521041450, 2.49392343193830673172627218675, 2.63647230669998500667089564230, 3.08563849860196136170921276318, 3.20985189463747322517125435449, 3.41191508142841726603185793721, 3.62456374164899762468618868548, 4.08696020160856823636743040497, 4.13559315672981738264155927278, 4.21013493065346535161220347645, 4.23133469647246136472888468125, 4.74583591199790861561420840714, 5.07077920023534064166516045123, 5.46164432859158609941928595229, 5.60541958274214311231796109574, 5.68506348261791168936360425480, 5.88712477898299920694646294413, 6.18444985092489853450887768189, 6.31009291638790608640779471824, 6.44061218308063451695588553613

Graph of the $Z$-function along the critical line