Properties

Label 8-2016e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $67153.7$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 12·13-s − 4·17-s + 14·25-s − 16·29-s + 10·37-s + 16·41-s + 7·49-s + 20·53-s − 4·61-s − 48·65-s − 18·73-s − 16·85-s − 8·89-s − 24·97-s − 32·101-s + 30·109-s − 8·113-s + 22·121-s + 64·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1.78·5-s − 3.32·13-s − 0.970·17-s + 14/5·25-s − 2.97·29-s + 1.64·37-s + 2.49·41-s + 49-s + 2.74·53-s − 0.512·61-s − 5.95·65-s − 2.10·73-s − 1.73·85-s − 0.847·89-s − 2.43·97-s − 3.18·101-s + 2.87·109-s − 0.752·113-s + 2·121-s + 5.72·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(67153.7\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4807419535\)
\(L(\frac12)\) \(\approx\) \(0.4807419535\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^3$ \( 1 - 17 T^{2} - 72 T^{4} - 17 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 + 38 T^{2} + 915 T^{4} + 38 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
31$C_2^3$ \( 1 - 41 T^{2} + 720 T^{4} - 41 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 - 5 T - 12 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 65 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 10 T^{2} - 2109 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 10 T + 47 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 34 T^{2} - 2325 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 113 T^{2} + 8280 T^{4} - 113 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 9 T + 8 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 - 137 T^{2} + 12528 T^{4} - 137 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 4 T - 73 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.60894862627344963086802856888, −6.06531566638181000292810112512, −5.98487230293476963883765056367, −5.87138455125239235207049391605, −5.65703710464808570382182365335, −5.58489695497745347135130207260, −5.32076220540788736967137314045, −4.98366375872647667003442306565, −4.86678870953405685603648338888, −4.45680248758202016078811165648, −4.45576113070818613452030450753, −4.38916092719926051960392024260, −3.83403591038429995640858068678, −3.75300965254489718132609129108, −3.40343289336921942885534594556, −2.89301023408079989086320186896, −2.69476443677215908255942533916, −2.54458142369602784404720457801, −2.35551527251111893178359595728, −2.21101294889662626362357440988, −2.05640372895073725800809543615, −1.38299253034354290765806159699, −1.30732487934328233790344544238, −0.78318447277551706593695661878, −0.11736500076414001011988671696, 0.11736500076414001011988671696, 0.78318447277551706593695661878, 1.30732487934328233790344544238, 1.38299253034354290765806159699, 2.05640372895073725800809543615, 2.21101294889662626362357440988, 2.35551527251111893178359595728, 2.54458142369602784404720457801, 2.69476443677215908255942533916, 2.89301023408079989086320186896, 3.40343289336921942885534594556, 3.75300965254489718132609129108, 3.83403591038429995640858068678, 4.38916092719926051960392024260, 4.45576113070818613452030450753, 4.45680248758202016078811165648, 4.86678870953405685603648338888, 4.98366375872647667003442306565, 5.32076220540788736967137314045, 5.58489695497745347135130207260, 5.65703710464808570382182365335, 5.87138455125239235207049391605, 5.98487230293476963883765056367, 6.06531566638181000292810112512, 6.60894862627344963086802856888

Graph of the $Z$-function along the critical line