Properties

Label 8-2016e4-1.1-c1e4-0-0
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $67153.7$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s + 4·25-s − 24·43-s − 2·49-s − 40·67-s − 40·107-s − 80·113-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 28·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 2.41·11-s + 4/5·25-s − 3.65·43-s − 2/7·49-s − 4.88·67-s − 3.86·107-s − 7.52·113-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.15·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(67153.7\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1744680386\)
\(L(\frac12)\) \(\approx\) \(0.1744680386\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 138 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54176679545598488878060503293, −6.48574624436236406769237590991, −6.06241084241249752537342049884, −5.77814084424305553768198895184, −5.46840278866238273656538974749, −5.46518281367981248751729589091, −5.35092237664243075146146991420, −5.02905759341184778518200530174, −4.79808115639578430152815424944, −4.70962970947631335063800880786, −4.42599728015629921609336796027, −4.05997634665677287921481616420, −3.93856368612285977608286734031, −3.71887702956303727931998851161, −3.18560357978245962740474338725, −3.02250514615957291880803423832, −2.94924452638217018171085095942, −2.72512332589468959144968450107, −2.53356547690894924507116472626, −2.12699708870489255870517230089, −1.54069860859275176556488498341, −1.53232942630085786462168250816, −1.43149161532078904481734151453, −0.53633225587813873199241415417, −0.098648222702785077779240442056, 0.098648222702785077779240442056, 0.53633225587813873199241415417, 1.43149161532078904481734151453, 1.53232942630085786462168250816, 1.54069860859275176556488498341, 2.12699708870489255870517230089, 2.53356547690894924507116472626, 2.72512332589468959144968450107, 2.94924452638217018171085095942, 3.02250514615957291880803423832, 3.18560357978245962740474338725, 3.71887702956303727931998851161, 3.93856368612285977608286734031, 4.05997634665677287921481616420, 4.42599728015629921609336796027, 4.70962970947631335063800880786, 4.79808115639578430152815424944, 5.02905759341184778518200530174, 5.35092237664243075146146991420, 5.46518281367981248751729589091, 5.46840278866238273656538974749, 5.77814084424305553768198895184, 6.06241084241249752537342049884, 6.48574624436236406769237590991, 6.54176679545598488878060503293

Graph of the $Z$-function along the critical line