Properties

Label 8-2016e4-1.1-c0e4-0-5
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $1.02468$
Root an. cond. $1.00305$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s − 2·13-s + 2·17-s − 4·25-s − 2·29-s + 2·37-s + 2·41-s − 2·49-s − 2·53-s − 2·61-s + 2·73-s + 3·81-s + 2·89-s + 2·97-s + 2·109-s + 2·113-s + 4·117-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·9-s − 2·13-s + 2·17-s − 4·25-s − 2·29-s + 2·37-s + 2·41-s − 2·49-s − 2·53-s − 2·61-s + 2·73-s + 3·81-s + 2·89-s + 2·97-s + 2·109-s + 2·113-s + 4·117-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.02468\)
Root analytic conductor: \(1.00305\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7356255730\)
\(L(\frac12)\) \(\approx\) \(0.7356255730\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
31$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.70891248273647857718847515071, −6.16285076182293122390775343071, −6.09573983785060478883165724104, −6.08862588194168505814805882055, −5.99481906651498941146789773439, −5.67911402293675031802921425337, −5.65067382945860378773458271663, −5.05624440779986162453870070605, −5.04124535716138313403161523463, −4.94186402873202804668246052107, −4.77005920379001538220267151624, −4.15661976152353882462500083534, −4.05971169403785206166445338684, −3.97926708478563933588316304733, −3.66572330014829490973476375430, −3.16086895813228209228601510753, −2.99007783825929830520150373683, −2.98932195525673536259601004059, −2.96331479897636675510824701269, −2.00519150011210948246172494671, −2.00194846719238086705147570658, −1.95595052725420206781836907020, −1.85783863167669148192655382561, −0.68237076840298874323420351541, −0.61648077832895542661799122430, 0.61648077832895542661799122430, 0.68237076840298874323420351541, 1.85783863167669148192655382561, 1.95595052725420206781836907020, 2.00194846719238086705147570658, 2.00519150011210948246172494671, 2.96331479897636675510824701269, 2.98932195525673536259601004059, 2.99007783825929830520150373683, 3.16086895813228209228601510753, 3.66572330014829490973476375430, 3.97926708478563933588316304733, 4.05971169403785206166445338684, 4.15661976152353882462500083534, 4.77005920379001538220267151624, 4.94186402873202804668246052107, 5.04124535716138313403161523463, 5.05624440779986162453870070605, 5.65067382945860378773458271663, 5.67911402293675031802921425337, 5.99481906651498941146789773439, 6.08862588194168505814805882055, 6.09573983785060478883165724104, 6.16285076182293122390775343071, 6.70891248273647857718847515071

Graph of the $Z$-function along the critical line