Properties

Label 8-200e4-1.1-c1e4-0-2
Degree $8$
Conductor $1600000000$
Sign $1$
Analytic cond. $6.50471$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 4·3-s + 8·4-s − 16·6-s + 8·8-s + 8·9-s + 12·11-s − 32·12-s − 4·16-s − 8·17-s + 32·18-s + 48·22-s − 32·24-s − 8·27-s − 32·32-s − 48·33-s − 32·34-s + 64·36-s + 12·41-s + 24·43-s + 96·44-s + 16·48-s + 32·51-s − 32·54-s − 64·64-s − 192·66-s + 12·67-s + ⋯
L(s)  = 1  + 2.82·2-s − 2.30·3-s + 4·4-s − 6.53·6-s + 2.82·8-s + 8/3·9-s + 3.61·11-s − 9.23·12-s − 16-s − 1.94·17-s + 7.54·18-s + 10.2·22-s − 6.53·24-s − 1.53·27-s − 5.65·32-s − 8.35·33-s − 5.48·34-s + 32/3·36-s + 1.87·41-s + 3.65·43-s + 14.4·44-s + 2.30·48-s + 4.48·51-s − 4.35·54-s − 8·64-s − 23.6·66-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(6.50471\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.220715367\)
\(L(\frac12)\) \(\approx\) \(3.220715367\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p T + p T^{2} )^{2} \)
5 \( 1 \)
good3$C_2^3$ \( 1 + 4 T + 8 T^{2} + 8 T^{3} + 7 T^{4} + 8 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 + 8 T + 32 T^{2} - 16 T^{3} - 353 T^{4} - 16 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^3$ \( 1 + 34 T^{2} + 795 T^{4} + 34 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^3$ \( 1 - 12 T + 72 T^{2} + 744 T^{3} - 8953 T^{4} + 744 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 24 T + 288 T^{2} + 3408 T^{3} + 35567 T^{4} + 3408 p T^{5} + 288 p^{2} T^{6} + 24 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^3$ \( 1 + 4 T + 8 T^{2} - 632 T^{3} - 8153 T^{4} - 632 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2^3$ \( 1 - 146 T^{2} + 13395 T^{4} - 146 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 24 T + 288 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.222388585541298374123273188096, −9.063529133533466490892419008060, −8.610012821958751638922738443921, −8.605501544872248045331926772498, −7.66520205942067832575048690576, −7.47121923904750975706704075665, −7.21284252878525190772182374626, −6.64848988625281425023659844989, −6.64217966355301426623584171156, −6.57068787004963010496849724737, −6.16520275082593948679464711423, −6.02673628810935109956571652206, −5.67084716115985473628009867567, −5.62786658191637446009706905229, −5.14009866411315656824988647607, −4.62490756329676464249240048063, −4.46334661418564516802034164156, −4.26240099314594303127997269958, −4.19639284153274565464395738441, −3.61167382106582127343927709295, −3.57943967691521696209915189971, −2.55096503201122438505119870413, −2.52182002874068447298479444649, −1.63869030610064386358175872273, −0.879868047995396952604262772193, 0.879868047995396952604262772193, 1.63869030610064386358175872273, 2.52182002874068447298479444649, 2.55096503201122438505119870413, 3.57943967691521696209915189971, 3.61167382106582127343927709295, 4.19639284153274565464395738441, 4.26240099314594303127997269958, 4.46334661418564516802034164156, 4.62490756329676464249240048063, 5.14009866411315656824988647607, 5.62786658191637446009706905229, 5.67084716115985473628009867567, 6.02673628810935109956571652206, 6.16520275082593948679464711423, 6.57068787004963010496849724737, 6.64217966355301426623584171156, 6.64848988625281425023659844989, 7.21284252878525190772182374626, 7.47121923904750975706704075665, 7.66520205942067832575048690576, 8.605501544872248045331926772498, 8.610012821958751638922738443921, 9.063529133533466490892419008060, 9.222388585541298374123273188096

Graph of the $Z$-function along the critical line