Properties

Label 8-1975e4-1.1-c0e4-0-0
Degree $8$
Conductor $1.521\times 10^{13}$
Sign $1$
Analytic cond. $0.943836$
Root an. cond. $0.992800$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 4·9-s − 2·11-s + 2·19-s − 2·31-s − 4·36-s − 2·44-s − 4·49-s + 2·76-s − 4·79-s + 10·81-s + 2·89-s + 8·99-s − 2·101-s + 121-s − 2·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s − 8·171-s + ⋯
L(s)  = 1  + 4-s − 4·9-s − 2·11-s + 2·19-s − 2·31-s − 4·36-s − 2·44-s − 4·49-s + 2·76-s − 4·79-s + 10·81-s + 2·89-s + 8·99-s − 2·101-s + 121-s − 2·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s − 8·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 79^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{8} \cdot 79^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{8} \cdot 79^{4}\)
Sign: $1$
Analytic conductor: \(0.943836\)
Root analytic conductor: \(0.992800\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{8} \cdot 79^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.002633790010\)
\(L(\frac12)\) \(\approx\) \(0.002633790010\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
79$C_1$ \( ( 1 + T )^{4} \)
good2$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
3$C_2$ \( ( 1 + T^{2} )^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
13$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
17$C_2$ \( ( 1 + T^{2} )^{4} \)
19$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
23$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
31$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
67$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
97$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.73784434404710056966631771293, −6.26670983509683467230463290888, −6.21390436680707159320100339821, −6.20097218535694920580075245881, −5.83607964520597216631779331238, −5.65148346643809418653664292336, −5.51977287740885538396895729465, −5.18687773721832427217101701105, −5.15969279836730106289144859601, −5.00512660658087552940120361320, −4.87389026170591000067396495481, −4.41600050465062195330488982680, −4.08831533484336784572638961913, −3.47830670147833745669285728142, −3.46518184360324496114732800617, −3.42441867362929581086425294668, −3.13526401956997833404193791357, −2.84189087946226129861056641964, −2.53064405916649520857153098566, −2.47728253103133410443785772920, −2.41038003220776168509411392583, −1.86647075045885345822920846539, −1.47711377691477051913384929197, −1.15282602885632469257823728687, −0.02426107055162404012020213940, 0.02426107055162404012020213940, 1.15282602885632469257823728687, 1.47711377691477051913384929197, 1.86647075045885345822920846539, 2.41038003220776168509411392583, 2.47728253103133410443785772920, 2.53064405916649520857153098566, 2.84189087946226129861056641964, 3.13526401956997833404193791357, 3.42441867362929581086425294668, 3.46518184360324496114732800617, 3.47830670147833745669285728142, 4.08831533484336784572638961913, 4.41600050465062195330488982680, 4.87389026170591000067396495481, 5.00512660658087552940120361320, 5.15969279836730106289144859601, 5.18687773721832427217101701105, 5.51977287740885538396895729465, 5.65148346643809418653664292336, 5.83607964520597216631779331238, 6.20097218535694920580075245881, 6.21390436680707159320100339821, 6.26670983509683467230463290888, 6.73784434404710056966631771293

Graph of the $Z$-function along the critical line