Properties

Label 8-1960e4-1.1-c0e4-0-0
Degree $8$
Conductor $1.476\times 10^{13}$
Sign $1$
Analytic cond. $0.915488$
Root an. cond. $0.989023$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s − 4·43-s − 4·53-s − 4·67-s + 81-s + 4·107-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  + 4·11-s − 4·43-s − 4·53-s − 4·67-s + 81-s + 4·107-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(0.915488\)
Root analytic conductor: \(0.989023\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1960} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.618494379\)
\(L(\frac12)\) \(\approx\) \(1.618494379\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2^2$ \( 1 + T^{4} \)
7 \( 1 \)
good3$C_2^3$ \( 1 - T^{4} + T^{8} \)
11$C_2$ \( ( 1 - T + T^{2} )^{4} \)
13$C_2^3$ \( 1 - T^{4} + T^{8} \)
17$C_2^3$ \( 1 - T^{4} + T^{8} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + T^{4} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
47$C_2^3$ \( 1 - T^{4} + T^{8} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + T^{4} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_2^3$ \( 1 - T^{4} + T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.78455456199932045878558263786, −6.43128032781403388384822115981, −6.34978255089868026487900151360, −6.17295131574672602007520387326, −6.01391923961920037128300571150, −5.84436109040130761113841306201, −5.59075646136150993324910360243, −5.11706896288769908397277154076, −4.88833739359896774435953959533, −4.69109466994569373153976826800, −4.67065651444874476297985607706, −4.37322042557541065139711921262, −4.20756965434041532849194256647, −3.78288295370457570616589227006, −3.63696915767250977084305921486, −3.37410373130829752072206870480, −3.30123222172558483690853473092, −3.06473609289237927131530240221, −2.80856031165082129564887514783, −2.20330101542419209099883202251, −1.74746769945061205058032668569, −1.71049858305065369401342424399, −1.55415969559917892806676621842, −1.30331451197242421052466012012, −0.67000012351427312704590870816, 0.67000012351427312704590870816, 1.30331451197242421052466012012, 1.55415969559917892806676621842, 1.71049858305065369401342424399, 1.74746769945061205058032668569, 2.20330101542419209099883202251, 2.80856031165082129564887514783, 3.06473609289237927131530240221, 3.30123222172558483690853473092, 3.37410373130829752072206870480, 3.63696915767250977084305921486, 3.78288295370457570616589227006, 4.20756965434041532849194256647, 4.37322042557541065139711921262, 4.67065651444874476297985607706, 4.69109466994569373153976826800, 4.88833739359896774435953959533, 5.11706896288769908397277154076, 5.59075646136150993324910360243, 5.84436109040130761113841306201, 6.01391923961920037128300571150, 6.17295131574672602007520387326, 6.34978255089868026487900151360, 6.43128032781403388384822115981, 6.78455456199932045878558263786

Graph of the $Z$-function along the critical line