Properties

Label 8-195e4-1.1-c2e4-0-3
Degree $8$
Conductor $1445900625$
Sign $1$
Analytic cond. $797.037$
Root an. cond. $2.30507$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s + 32·9-s − 32·16-s + 88·19-s + 48·25-s + 72·27-s − 52·31-s + 68·43-s − 256·48-s + 146·49-s + 704·57-s + 268·61-s − 400·67-s − 304·73-s + 384·75-s + 47·81-s − 416·93-s − 100·97-s + 4·103-s + 396·109-s + 127-s + 544·129-s + 131-s + 137-s + 139-s − 1.02e3·144-s + 1.16e3·147-s + ⋯
L(s)  = 1  + 8/3·3-s + 32/9·9-s − 2·16-s + 4.63·19-s + 1.91·25-s + 8/3·27-s − 1.67·31-s + 1.58·43-s − 5.33·48-s + 2.97·49-s + 12.3·57-s + 4.39·61-s − 5.97·67-s − 4.16·73-s + 5.11·75-s + 0.580·81-s − 4.47·93-s − 1.03·97-s + 0.0388·103-s + 3.63·109-s + 0.00787·127-s + 4.21·129-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 7.11·144-s + 7.94·147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(797.037\)
Root analytic conductor: \(2.30507\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(9.347535282\)
\(L(\frac12)\) \(\approx\) \(9.347535282\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 - 8 T + 32 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} \)
5$C_2^2$ \( 1 - 48 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
good2$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 73 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 23953 T^{4} + p^{8} T^{8} \)
17$C_2^3$ \( 1 - 119953 T^{4} + p^{8} T^{8} \)
19$C_2^2$ \( ( 1 - 44 T + 968 T^{2} - 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 178993 T^{4} + p^{8} T^{8} \)
29$C_2^2$ \( ( 1 + 224 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 26 T + 338 T^{2} + 26 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2513 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^3$ \( 1 - 1084753 T^{4} + p^{8} T^{8} \)
43$C_2^2$ \( ( 1 - 34 T + 578 T^{2} - 34 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 784 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^3$ \( 1 + 13910639 T^{4} + p^{8} T^{8} \)
59$C_2^3$ \( 1 - 18768478 T^{4} + p^{8} T^{8} \)
61$C_2$ \( ( 1 - 67 T + p^{2} T^{2} )^{4} \)
67$C_2$ \( ( 1 + 100 T + p^{2} T^{2} )^{4} \)
71$C_2^3$ \( 1 + 2073167 T^{4} + p^{8} T^{8} \)
73$C_2$ \( ( 1 + 76 T + p^{2} T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 4561 T^{2} + p^{4} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 5066 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^3$ \( 1 + 123934367 T^{4} + p^{8} T^{8} \)
97$C_2$ \( ( 1 + 25 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.983778033987441202315107925259, −8.905905935234667331588780067270, −8.673767858929156923404660997975, −7.972136456950412413237786555144, −7.75899826693347072243660340303, −7.70252407730134744849125046187, −7.31291958751473368567482752119, −7.06853647537111344488803599267, −7.02380470192875419509232447698, −6.87422290070678579695976874908, −5.99125190313169500402224879531, −5.70342643038456322478247373993, −5.42109723468143709036723745312, −5.38504310207685658370972249340, −4.63379491403698956166341390953, −4.37443223710204944055053514711, −4.23103267147457906194518557479, −3.50122148280273341279165607823, −3.48536693513666846467911814275, −2.87654534543550957148819516136, −2.80829110743917917383870220929, −2.58687963085365855790192409372, −1.88834231531864293736918129943, −1.38502037939227005404942432402, −0.809907518020263380382782881715, 0.809907518020263380382782881715, 1.38502037939227005404942432402, 1.88834231531864293736918129943, 2.58687963085365855790192409372, 2.80829110743917917383870220929, 2.87654534543550957148819516136, 3.48536693513666846467911814275, 3.50122148280273341279165607823, 4.23103267147457906194518557479, 4.37443223710204944055053514711, 4.63379491403698956166341390953, 5.38504310207685658370972249340, 5.42109723468143709036723745312, 5.70342643038456322478247373993, 5.99125190313169500402224879531, 6.87422290070678579695976874908, 7.02380470192875419509232447698, 7.06853647537111344488803599267, 7.31291958751473368567482752119, 7.70252407730134744849125046187, 7.75899826693347072243660340303, 7.972136456950412413237786555144, 8.673767858929156923404660997975, 8.905905935234667331588780067270, 8.983778033987441202315107925259

Graph of the $Z$-function along the critical line