Properties

Label 8-1950e4-1.1-c1e4-0-39
Degree $8$
Conductor $1.446\times 10^{13}$
Sign $1$
Analytic cond. $58782.3$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 4-s + 4·6-s + 2·7-s − 2·8-s + 9-s + 2·11-s + 2·12-s + 6·13-s + 4·14-s − 4·16-s + 2·17-s + 2·18-s − 6·19-s + 4·21-s + 4·22-s + 2·23-s − 4·24-s + 12·26-s − 2·27-s + 2·28-s + 6·29-s + 16·31-s − 2·32-s + 4·33-s + 4·34-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 1/2·4-s + 1.63·6-s + 0.755·7-s − 0.707·8-s + 1/3·9-s + 0.603·11-s + 0.577·12-s + 1.66·13-s + 1.06·14-s − 16-s + 0.485·17-s + 0.471·18-s − 1.37·19-s + 0.872·21-s + 0.852·22-s + 0.417·23-s − 0.816·24-s + 2.35·26-s − 0.384·27-s + 0.377·28-s + 1.11·29-s + 2.87·31-s − 0.353·32-s + 0.696·33-s + 0.685·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(58782.3\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(19.20648865\)
\(L(\frac12)\) \(\approx\) \(19.20648865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - T + T^{2} )^{2} \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
5 \( 1 \)
13$C_2^2$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
good7$D_4\times C_2$ \( 1 - 2 T - 8 T^{2} + 4 T^{3} + 67 T^{4} + 4 p T^{5} - 8 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 2 T - 16 T^{2} + 4 T^{3} + 235 T^{4} + 4 p T^{5} - 16 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 2 T - 19 T^{2} + 22 T^{3} + 172 T^{4} + 22 p T^{5} - 19 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 6 T - 8 T^{2} + 36 T^{3} + 891 T^{4} + 36 p T^{5} - 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 2 T - 16 T^{2} + 52 T^{3} - 221 T^{4} + 52 p T^{5} - 16 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 6 T - 19 T^{2} + 18 T^{3} + 1140 T^{4} + 18 p T^{5} - 19 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 - 2 T - 23 T^{2} + 94 T^{3} - 788 T^{4} + 94 p T^{5} - 23 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 8 T - 7 T^{2} + 88 T^{3} + 736 T^{4} + 88 p T^{5} - 7 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 10 T - 8 T^{2} + 220 T^{3} + 5515 T^{4} + 220 p T^{5} - 8 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 12 T + 139 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 4 T + 2 T^{2} + 416 T^{3} - 4229 T^{4} + 416 p T^{5} + 2 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 4 T + 37 T^{2} - 572 T^{3} - 4256 T^{4} - 572 p T^{5} + 37 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 2 T - 56 T^{2} - 148 T^{3} - 1157 T^{4} - 148 p T^{5} - 56 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 6 T - 112 T^{2} + 36 T^{3} + 14307 T^{4} + 36 p T^{5} - 112 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 8 T + 87 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
83$D_{4}$ \( ( 1 + 14 T + 212 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 4 T - 118 T^{2} - 176 T^{3} + 8611 T^{4} - 176 p T^{5} - 118 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 + 10 T + 3 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.40021508065832168982600818412, −6.36203185160931943859186275328, −6.22979378631966223500489896304, −5.75335477443050846171578513844, −5.70499125722044162871030313679, −5.64475712212537717246223483151, −5.06470395111084144661073976653, −4.90769610475150645729936164571, −4.72592463605759589454873799262, −4.58128951033937909682282506261, −4.32625133698592226968269237333, −4.20153470649733930268900162412, −3.87976489547270539604290728719, −3.72471667165049509052633006044, −3.59286117092053039049998725854, −2.96821224236244426968215427557, −2.91846206950680049868949572002, −2.89446939770363416851386006523, −2.74422042506076475094974567877, −2.16650057307795582869863523196, −1.74336562978274807672317519686, −1.72032277675907784967917181176, −1.28911704080273454261365840138, −0.820771662027204888197696014781, −0.57354921231064176360029293585, 0.57354921231064176360029293585, 0.820771662027204888197696014781, 1.28911704080273454261365840138, 1.72032277675907784967917181176, 1.74336562978274807672317519686, 2.16650057307795582869863523196, 2.74422042506076475094974567877, 2.89446939770363416851386006523, 2.91846206950680049868949572002, 2.96821224236244426968215427557, 3.59286117092053039049998725854, 3.72471667165049509052633006044, 3.87976489547270539604290728719, 4.20153470649733930268900162412, 4.32625133698592226968269237333, 4.58128951033937909682282506261, 4.72592463605759589454873799262, 4.90769610475150645729936164571, 5.06470395111084144661073976653, 5.64475712212537717246223483151, 5.70499125722044162871030313679, 5.75335477443050846171578513844, 6.22979378631966223500489896304, 6.36203185160931943859186275328, 6.40021508065832168982600818412

Graph of the $Z$-function along the critical line