Properties

Label 8-1950e4-1.1-c1e4-0-27
Degree $8$
Conductor $1.446\times 10^{13}$
Sign $1$
Analytic cond. $58782.3$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s − 2·7-s + 2·8-s + 9-s − 6·11-s − 10·13-s + 4·14-s − 4·16-s − 6·17-s − 2·18-s − 6·19-s + 12·22-s + 18·23-s + 20·26-s − 2·28-s − 2·29-s + 2·32-s + 12·34-s + 36-s + 14·37-s + 12·38-s + 36·41-s + 30·43-s − 6·44-s − 36·46-s + 12·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 1/2·4-s − 0.755·7-s + 0.707·8-s + 1/3·9-s − 1.80·11-s − 2.77·13-s + 1.06·14-s − 16-s − 1.45·17-s − 0.471·18-s − 1.37·19-s + 2.55·22-s + 3.75·23-s + 3.92·26-s − 0.377·28-s − 0.371·29-s + 0.353·32-s + 2.05·34-s + 1/6·36-s + 2.30·37-s + 1.94·38-s + 5.62·41-s + 4.57·43-s − 0.904·44-s − 5.30·46-s + 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(58782.3\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.179576191\)
\(L(\frac12)\) \(\approx\) \(1.179576191\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 + 2 T - 8 T^{2} - 4 T^{3} + 67 T^{4} - 4 p T^{5} - 8 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 6 T + 28 T^{2} + 96 T^{3} + 267 T^{4} + 96 p T^{5} + 28 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + 2 T + p T^{2} )^{2}( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
19$D_4\times C_2$ \( 1 + 6 T + 44 T^{2} + 192 T^{3} + 891 T^{4} + 192 p T^{5} + 44 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 18 T + 180 T^{2} - 1296 T^{3} + 7139 T^{4} - 1296 p T^{5} + 180 p^{2} T^{6} - 18 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 2 T - 43 T^{2} - 22 T^{3} + 1252 T^{4} - 22 p T^{5} - 43 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 92 T^{2} + 3846 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 14 T + 85 T^{2} - 14 p T^{3} + 100 p T^{4} - 14 p^{2} T^{5} + 85 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 36 T + 621 T^{2} - 6804 T^{3} + 51752 T^{4} - 6804 p T^{5} + 621 p^{2} T^{6} - 36 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 30 T + 460 T^{2} - 4800 T^{3} + 36651 T^{4} - 4800 p T^{5} + 460 p^{2} T^{6} - 30 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 6 T + 76 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 170 T^{2} + 12411 T^{4} - 170 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^3$ \( 1 + 54 T^{2} - 565 T^{4} + 54 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 8 T - 47 T^{2} + 88 T^{3} + 4696 T^{4} + 88 p T^{5} - 47 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 + 2 T + 16 T^{2} - 292 T^{3} - 4613 T^{4} - 292 p T^{5} + 16 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 6 T + 148 T^{2} - 816 T^{3} + 14307 T^{4} - 816 p T^{5} + 148 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 16 T + 207 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 12 T + 182 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 10 T + 164 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 12 T + 202 T^{2} - 1848 T^{3} + 20067 T^{4} - 1848 p T^{5} + 202 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 6 T - 61 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.60811824940103760070520816662, −6.33524267824542268484464267993, −5.98890025400125078948367871776, −5.91083659788404491074606441399, −5.81582228857043371436225142245, −5.53899519571204408873603913648, −5.40182182218295441464243685702, −4.82279235618497936441431889487, −4.72569401628877931993790594251, −4.53621278437423131156441242397, −4.50446652111217597549946894911, −4.20479579491722006989347951499, −4.18257211885833806088839208388, −3.74227391064698335866346748139, −3.18451992999944285344997090915, −2.85580381149248382211547205684, −2.82443283507904852970974728313, −2.47011555471893639618725310927, −2.32257314621944695857693257046, −2.22489985473569677579526777026, −2.16674946656727430478186301230, −1.01860698723468507585142813022, −0.853426987254315009453191582461, −0.73113531555575922734967081888, −0.41749332664145819041727744440, 0.41749332664145819041727744440, 0.73113531555575922734967081888, 0.853426987254315009453191582461, 1.01860698723468507585142813022, 2.16674946656727430478186301230, 2.22489985473569677579526777026, 2.32257314621944695857693257046, 2.47011555471893639618725310927, 2.82443283507904852970974728313, 2.85580381149248382211547205684, 3.18451992999944285344997090915, 3.74227391064698335866346748139, 4.18257211885833806088839208388, 4.20479579491722006989347951499, 4.50446652111217597549946894911, 4.53621278437423131156441242397, 4.72569401628877931993790594251, 4.82279235618497936441431889487, 5.40182182218295441464243685702, 5.53899519571204408873603913648, 5.81582228857043371436225142245, 5.91083659788404491074606441399, 5.98890025400125078948367871776, 6.33524267824542268484464267993, 6.60811824940103760070520816662

Graph of the $Z$-function along the critical line